张立武

研究员

Email:zhanglw@fudan.edu.cn

课题组主页:http://www.zhanglwlab.com

研究方向:气液界面,微液滴,光化学,微塑料,拉曼光谱          

个人简历

教育简历

  • 2004-2009, 清华大学,化学系直博,博士

  • 2000-2004, 北京化工大学,应用化学系,学士

工作简历

  • 2014.11-至今,复旦大学,环境科学与工程系,研究员(正高)

  • 2012-2014,英国剑桥大学,物理系,玛丽居里学者博士后

  • 2009-2012,德国汉诺威大学,洪堡学者博士后

博士生导师/方向

  • 大气化学,环境化学

硕士生导师/方向

  • 大气化学,环境化学

学术兼职

  • Environmental Science: Advances  副主编

  • Proceedings of Royal Society A 编委

  • Environmental Science & Ecotechnology 编委

  • 全球大气化学研究计划(IGAC)中国工作组成员

  • 中国土壤学会微塑料专委会工作组成员

  • 中国分析测试协会环境分析分会委员

  • 中国光学会光谱专业委员会委员

荣誉与奖励

  • 2022年,英国皇家学会国际合作奖

  • 2019年,第一届中国化学会青年环境化学奖

  • 2017年,教育部自然科学奖,一等奖

  • 2011年,中国百篇最具影响国家学术论文奖

人才培养

本科生课程:

  • 《环境纳米技术(全英文课程)》《大气环境监测:理论与实践》《环境设备基础》《环境科学前沿》

研究生课程:

  • 《纳米技术及其环境效应》

科学研究

主持和参与的主要项目/课题

  • 国家级青年人才计划,2015-2018,主持

  • 政府间国际科技创新合作重点专项项目,基于解吸电喷雾飞行时间质谱技术的海洋大气研究,2017/01-2019/12,已结题,主持

  • 国家自然科学基金委员会, 专项项目, 22442028, 专题研讨类:大气环境化学过程中的多介质相互作用研讨会, 2025, 在研, 主持

  • 国家自然科学基金委员会, 面上项目, 22376028, 大气气溶胶pH的检测及单颗粒内部酸度梯度分布研究, 2024-2027, 在研, 主持

  • 国家自然科学基金,面上项目,大气中碳酸根自由基的生成及其氧化潜势,2020/01-2023/12,已结题,主持

  • 国家自然科学基金面上项目,大气气溶胶表面非均相反应的组份间协同作用机制研究,2017/01-2020/12,已结题,主持

  • 欧盟FP7框架玛丽居里研究基金,Marie Curie Intra-European Fellowship,2012/8-2014/7,已结题,主持

教研成果

代表性论文:

  • 1.Yang, L., Liu, Y., Ge, Q., Wang, J., Wang, R., You, W., Wang, W., Wang, T., & Zhang, L. (2025). Atmospheric hydroxyl radical route revealed: Interface-mediated effects of mineral-bearing microdroplet aerosol. Journal of the American Chemical Society, 147(4), 3371–3382.

  • 2.Wang, W., Liu, Y., Wang, T., Ge, Q., Li, K., You, W., Wang, L., Xie, L., Fu, H., Chen, J., & Zhang, L. (2024). Significantly accelerated photosensitized formation of atmospheric sulfate at air-water interface of microdroplet. Journal of the American Chemical Society, 146(10), 6580.

  • 3.Gong, K., Ao, J., Li, K., Liu, L., Liu, Y., Xu, G., Wang, T., Cheng, H., Wang, Z., Zhang, X., Wei, H., George, C., Mellouki, A., Herrmann, H., Wang, L., Chen, J., Ji, M., Zhang, L., & Francisco, J. S. (2023). Imaging of pH distribution inside individual microdroplet by stimulated Raman microscopy. Proceedings of the National Academy of Sciences, 120, e2075379176.

  • 4.Ge, Q., Liu, Y., Li, K., Xie, L., Ruan, X., Wang, W., Wang, L., Wang, T., You, W., & Zhang, L. (2023). Significant acceleration of photocatalytic CO2 reduction at the gas‐liquid interface of microdroplets. Angewandte Chemie International Edition, e202304189.

  • 5.Liu, Y., Ge, Q., Wang, T., Zhang, R., Li, K., Gong, K., Xie, L., Wang, W., Wang, L., You, W., Ruan, X., Shi, Z., Han, J., Wang, R., Fu, H., Chen, J., Chan, C. K., & Zhang, L. (2024). Strong electric field force at the air/water interface drives fast sulfate production in the atmosphere. Chem, 10(1), 330–351.

  • 6.Liu, Y., Li, K., Ge, Q., Wang, L., You, W., Gong, K., Ao, J., Xie, L., Wang, W., Yang, L., Wang, R., Wang, J., Wang, L., Ma, M., Huang, T., Wang, T., Ji, M., Fu, H., Chen, J., & Zhang, L. (2025). Interfacial electric fields transform brown carbon formation: Accelerate radical coupling toward strong light-absorbing products. Journal of the American Chemical Society. Advance online publication. https://doi.org/10.1021/jacs.5c08398

  • 7.Li, K., You, W., Zhu, Y., Wang, W., Wang, L., Liu, Y., Ge, Q., Wang, T., Wang, R., Ruan, X., Cheng, H., & Zhang, L. (2025). Strong electric fields on water microdroplets enable near-unity selectivity in H2O2 photosynthesis. Journal of the American Chemical Society, 147(40), 36136–36145.

  • 8.Ge, Q., Liu, Y., You, W., Li, Y., Wang, W., Yang, L., Xie, L., Li, K., Wang, L., Ma, M., Wang, R., Wang, J., Huang, T., Wang, T., Ruan, X., Ji, M., & Zhang, L. (2025). Substantially improved efficiency and selectivity of carbon dioxide reduction by superior hydrated electron in microdroplet. Science Advances, 11(41), eadx5714.

  • 9.Jones, R. R., Kerr, J. F., Kwon, H., Clowes, S. R., Ji, R., Petronijevic, E., Zhang, L., Pantoș, G. D., Smith, B., Batten, T., Fischer, P., Wolverson, D., Andrews, D. L., & Valev, V. K. (2024). Chirality conferral enables the observation of hyper-Raman optical activity. Nature Photonics, 18, 982–989.

  • 10.Wang, T., Kalalian, C., Wang, X., Li, D., Perrier, S., Chen, J., Domine, F., Zhang, L., & George, C. (2024). Photoinduced Evolutions of Permafrost-Derived Carbon in Subarctic Thermokarst Pond Surface Waters. Environmental Science & Technology, *58*(39), 17429–17440.

  • 11.Ruan, X., Ao, J., Ma, M., Jones, R. R., Liu, J., Li, K., Ge, Q., Xu, G., Liu, Y., Wang, T., Xie, L., Wang, W., You, W., Wang, L., Valev, V. K., Ji, M., & Zhang, L. (2024). Nanoplastics Detected in Commercial Sea Salt. Environmental Science & Technology, *58*(21), 9091–9101.

  • 12.Xie, L., Luo, S., Liu, Y., Ruan, X., Gong, K., Ge, Q., Li, K., Valev, V. K., Liu, G., & Zhang, L. (2023). Automatic Identification of Individual Nanoplastics by Raman Spectroscopy Based on Machine Learning. Environmental Science & Technology, *57*(46), 18203–18214.

  • 13.Wang, T., Kalalian, C., Fillion, D., Perrier, S., Chen, J., Domine, F., Zhang, L., & George, C. (2023). Sunlight Induces the Production of Atmospheric Volatile Organic Compounds (VOCs) from Thermokarst Ponds. Environmental Science & Technology, *57*(45), 17363–17373.

  • 14.Li, K., You, W., Wang, W., Gong, K., Liu, Y., Wang, L., Ge, Q., Ruan, X., Ao, J., Ji, M., & Zhang, L. (2021). Significantly Accelerated Photochemical Perfluorooctanoic Acid Decomposition at the Air-Water Interface of Microdroplets. Environmental Science & Technology, *57*(50), 21448–21458.

  • 15.Xu, G., Cheng, H., Jones, R., Feng, Y., Gong, K., Li, K., Fang, X., Tahir, M. A., Valev, V. K., & Zhang, L. (2020). Surface-Enhanced Raman Spectroscopy Facilitates the Detection of Microplastics <1 μm in the Environment. Environmental Science & Technology, *54*(24), 15594–15603.

  • 16.Wang, T., Liu, Y., Cheng, H., Yang, Y., Feng, Y., Zhang, L., Fu, H., & Chen, J. (2020). Photochemical Oxidation of Water-Soluble Organic Carbon (WSOC) on Mineral Dust and Enhanced Organic Ammonium Formation. Environmental Science & Technology, *54*(24), 15631–15642.

  • 17.Fu, Y., Kuppe, C., Valev, V. K., Fu, H., Zhang, L., & Chen, J. (2017). Surface-Enhanced Raman Spectroscopy: A Facile and Rapid Method for the Chemical Component Study of Individual Atmospheric Aerosol. Environmental Science & Technology, *51*(11), 6260–6267.