马臻

教授

Email:zhenma@fudan.edu.cn

研究方向:环境催化

个人简历

教育简历

  • 2001-2006, 加州大学河边分校,化学系,博士

  • 1998-2001, 复旦大学,化学系,硕士

  • 1994-1998, 复旦大学,化学系,学士

工作简历

  • 2013.12-至今,   复旦大学,环境系,教授

  • 2009.12-2013.12  复旦大学,环境系,副研究员

  • 2006.05-2009.10  橡树岭国家实验室,化学科学部门,博士后

博士生导师/方向

  • 环境工程(环境催化)

硕士生导师/方向

  • 环境工程(环境催化)

荣誉与奖励

【2010】Journal of Physical Chemistry top 20% reviewer

【2011】第二届全国科学博客大赛教育求学组优秀博客大奖(马博士-马臻-科学网)

【2011】第二届全国科学博客大赛海外观察组优秀博文大奖(《谈谈在美国读研的科研情况》)

【2011】第二届全国科学博客大赛入围博文纪念奖(《我所经历的一种美国博士生培养方式》)

【2011】第三届中国科技馆杯“我与科协”征文活动纪念奖(《写博客成了栏目主持人》)

【2011】2010-2011学年复旦学院“经典读书计划”读书小组风采奖(《生命中不该忘记的事》指导教师)

【2012】2011-2012学年复旦学院“经典读书计划”读书小组风采奖(《生命中不该忘记的事》指导教师)

【2014】《科技导报》2013年度优秀栏目主持人

【2016】复旦大学2016届本(专)科生“我心目中的好老师”提名奖

【2018】复旦大学环境科学与工程系2016-2017学年教学优秀奖

【2018】《催化学报》优秀审稿专家

【2018】复旦大学六届五次教代会优秀提案奖三等奖(《关于加强校报建设的提案》

【2018】首届九三教育论坛征文一等奖(《研究生培养和大学教师发展的几个问题》)

【2018】复旦大学2018年度校园网络文化作品网文类三等奖(《做科研的难点和乐趣》)

【2019】复旦大学环境科学与工程系2017-2018学年教学优秀奖

【2019】复旦大学2019年度校园网络文化作品网文类一等奖(《全面把握、因势利导:辩证地看待高校“网红教师”现象》)

【2019】复旦大学2019年度最受欢迎教师运营新媒体(马臻的博客)

【2020】复旦大学第九届“研究生心目中的好导师”提名奖

【2020】第六届中国化学会《化学通报》优秀编审奖

【2020】九三学社上海市委思想政治建设暨宣传骨干网络培训班优秀学员

【2020】2020年《中国研究生》杂志优秀特邀撰稿人

【2020】中国学位与研究生教育学会先进工作者(2019-2020)

【2021】2021年长三角科学道德和学风建设论坛“特色工作法案例”类征文二等奖(《研究生导师立德树人机制建设》)

【2021】第二届九三教育论坛征文二等奖(《全面把握、因势利导:辩证地看待高校“网红教师”现象》)

学术论文

2021年

[191] Z. Ma*, Hydroxyapatite-based catalysts: Influence of the molar ratio of Ca to P, in: Design and Application of Hydroxyapatite-Based Catalysts, D.P. Min (ed.), Wiley-VCH, Weinheim, in press.

[190] Y.F. Liu, Z. Ma*, Combining g-C3N4 with CsPbI3 for efficient photocatalysis under visible light, Colloids and Surfaces A: Physicochemical and Engineering Aspects 618 (2021) 127310 (11 pp).

[189] H.Y. Xue, X.M. Guo*, T. Meng, D.S. Mao, Z. Ma*, Poisoning effect of K with respect to Cu/ZSM-5 used for NO reduction, Colloid and Interface Science Communications 44 (2021) 100465 (9 pp).

[188] Y.H. Chen, Y.F. Liu, Z. Ma*, g-C3N4 sensitized by an indoline dye for photocatalytic H2 evolution, Processes 9 (2021) 1055 (15 pp).

[187] Y.N. Liang, D.S. Mao*, X.M. Guo, J. Yum G.S. Wu, Z. Ma*, Solvothermal preparation of CuO-ZnO-ZrO2 catalysts for methanol synthesis via CO2 hydrogenation, Journal of the Taiwan Institute of Chemical Engineers 121 (2021) 83-93.

[186] Y.F. Liu, Z. Ma*, TiOF2/g-C3N4 composite for visible-light driven photocatalysis, Colloids and Surfaces A: Physicochemical and Engineering Aspects 618 (2021) 126471 (12 pp).

[185] X.L. Hu, J.X. Chen, W.Y. Qu, R. Liu, D.R. Xu, Z. Ma, X.F. Tang*, Sulfur-resistant ceria-based low-temperature SCR catalysts with the non-bulk electronic states of ceria, Environmental Science & Technology 55 (2021) 5435-5441.

[184] Y.F. Liu, Z. Ma*, g-C3N4 modified by pyropheophorbide-a for photocatalytic H2 evolution, Colloids and Surfaces A: Physicochemical and Engineering Aspects 615 (2021) 126128 (7 pp).

[183] Y.H. Chen, Y.F. Liu, Z. Ma*, Graphitic C3N4 modified by Ru(II)-based dyes for photocatalytic H2 evolution, Colloids and Surfaces A: Physicochemical and Engineering Aspects 614 (2021) 126119 (10 pp).

[182] Y.X. Chen, Z. Ma, X.F. Tang*, Single-atom heterogeneous catalysts, in: Heterogeneous Catalysts: Emerging Techniques for Design, Characterization and  Applications, W.Y. Teoh, A. Urakawa, Y.H. Ng, P.H.L. Sit (eds.), Wiley-VCH, Weinheim (2021) 103-117.

2020年(12篇)

[181] Y.F. Liu, Z. Ma*, g-C3N4 modified by meso-tetrahydroxyphenylchlorin for photocatalytic hydrogen evolution under visible/near-infrared light, Frontiers in Chemistry 8 (2020) 605343 (13 pp).

[180] 丁雨阳, 刘振东, 马臻*, Ag3VO4/Ag2Mo2O7复合光催化剂, 复旦学报(自然科学版) 59 (2020) 618-626.

[179] Y. Chen, Y.M. Liu, D.S. Mao*, J. Yu, Y.L. Zheng, X.M. Guo, Z. Ma*, Facile cyclodextrin-assisted synthesis of highly active CuO-CeO2/MCF catalyst for CO oxidation, Journal of the Taiwan Institute of Chemical Engineers 113 (2020) 16-26.

[178] Z.D. Liu, Z. Ma*, Promoting the photocatalytic activity of Bi4Ti3O12 microspheres by incorporating iron, RSC Advances 10 (2020) 19232-19239.

[177] Y.F. Liu, S.F. Kang*, L.F. Cui*, Z. Ma*, Boosting near-infrared-driven photocatalytic H2 evolution using protoporphyrin-sensitized g-C3N4, Journal of Photochemistry and Photobiology A: Chemistry 396 (2020) 112517 (9 pp).

[176] L. Wang, J.B. Wang, X.N. Liu, Y.X. Chen, H.P. Cheng, Y.B. Wu, H. Pei, Z. Ma*, FeCeOx with improved activity for catalytic reduction of NO with NH3, Journal of Physics and Chemistry of Solids 142 (2020) 109472 (8 pp).

[175] 丁雨阳, 刘振东, 焦钟艺, 马臻*, AgI/Ag2Mo2O7和AgBr/Ag2Mo2O7复合光催化剂, 复旦学报(自然科学版) 59 (2020) 97-108 & 115.

[174] L.L. Liu, X.Y. Yang, Y.J. Xie, H. Liu, X.R. Zhou, X.Y. Xiao, Y. Ren, Z. Ma, X.W. Cheng, Y.H. Deng*, D.Y. Zhao, A universal lab-on-salt-particle approach to 2D single-layer ordered mesoporous materials, Advanced Materials 32 (2020) 1906653 (9 pp).

[173] X.L. Hu, J.X. Chen, S.Y. Li, Y.X. Chen, W.Y. Qu, Z. Ma, X.F. Tang*, The promotional effect of copper in catalytic oxidation by Cu-doped α-MnO2 nanorods, Journal of Physical Chemistry C 124 (2020) 701-708.

[172] X.L. Hu, S.Y. Li, Y.X. Chen, W.Y. Qu, J.X. Chen, Z. Ma, X.F. Tang*, Single-ion copper doping greatly enhances catalytic activity of manganese oxides via electronic interactionsin, Chemical Communications 56 (2010) 904-907.

[171] J. Liu, Z.D. Liu, J.L. Zhang, Z. Ma*, AgI/Ag2Mo3O10·1.8H2O: A new photocatalyst working under visible light, Materials Chemistry and Physics 241 (2020) 122406 (10 pp).

[170] Y.F. Liu, M.F. He, R. Guo, Z.R. Fang, S.F. Kang*, Z. Ma, M.D. Dong, W.L. Wang*, L.F. Cui*, Ultrastable metal-free near-infrared-driven photocatalysts for H2 production based on protonated 2D g-C3N4 sensitized with Chlorin e6, Applied Catalysis B: Environmental 260 (2020) 118137 (10 pp).

2019年(10篇)

[169] K. Xie, D.R. Xu, C. Li, X.N. Liu, X.L. Hu, Z. Ma, X.F. Tang, Y.X. Chen*, Low-temperature benzene abatement over active manganese oxides with abundant catalytic sites, Industrial & Engineering Chemistry Research 58 (2019) 3717601-17607.

[168] C. Li, Z.W. Huang, X.N. Liu, J.X. Chen, W.Y. Qu, X.M. Jiang, H. Wang, Z. Ma, X.F. Tang, Y.X. Chen*, Rational design of alkali-resistant catalysts for selective NO reduction with NH3, Chemical Communications 55 (2019) 9853-9856.

[167] Z.D. Liu, Z. Ma*, Ag-SrTiO3/TiO2 composite nanostructures with enhanced photocatalytic activity, Materials Research Bulletin 118 (2019) 110492 (9 pp).

[166] Z.D. Liu, Z. Ma*, Facile synthesis of Bi2S3/BiOCl0.5Br0.5 microspheres with enhanced photocatalytic activity under visible light irradiation, Journal of the Taiwan Institute of Chemical Engineers 100 (2019) 220-229.

[165] Z.Y. Jiao, Z.D. Liu, Z. Ma*, Rodlike AgI/Ag2Mo2O7 heterojunctions with enhanced visible-light-driven photocatalytic activity, ACS Omega 4 (2019) 7919-7930.

[164] S. Liu, H.B. Zhou, L. Zhang, Z. Ma*, Y.D. Wang*, Activated carbon supported Mo-Co-K sulfide catalysts for synthesizing higher alcohols from CO2, Chemical Engineering & Technology 42 (2019) 962-970.

[163] J.L. Zhang, Z.D. Liu, Z. Ma*, Facile formation of Bi2O2CO3/Bi2MoO6 nanosheets for visible-light-driven photocatalysis, ACS Omega 4 (2019) 3871-3880.

[162] Z.D. Liu, X.N. Liu, Q.F. Lu, Q.Y. Wang, Z. Ma*, TiOF2/TiO2 composite nanosheets: Effect of hydrothermal synthesis temperature on physicochemical properties and photocatalytic activity, Journal of the Taiwan Institute of Chemical Engineers 96 (2019) 165-173.

[161] 王玉琳, 刘欢, 马臻*, 六方相和单斜相LaPO4负载金催化剂的CO氧化, 复旦学报(自然科学版) 58 (2019) 109-119.

[160] Z.Y. Jiao, J.L. Zhang, Z.D. Liu, Z. Ma*, Ag/AgCl/Ag2MoO4 composites for visible-light-driven photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry 371 (2019) 67-75.

2018年(16篇)

[159] Y.L. Wang, H. Liu, Z. Ma*, Cerium phosphate-supported Au catalysts for CO oxidation, Chinese Journal of Chemical Engineering 26 (2018) 2055-2063.

[158] J.X. Chen, W.Y. Qu, Y.X. Chen, X.N. Liu, X.M. Jiang, H. Wang, Y.H. Zong, Z. Ma, X.F. Tang*, Simultaneously enhancing stability and activity of maghemite via site-specific Ti(IV) doping for NO emission control, ChemCatChem 10 (2018) 4683-4688.

[157] X.N. Liu, J.Y. Gao, Y.X. Chen, C. Li, J.X. Chen, W.Y. Qu, X. Chen, Z. Ma, X.F. Tang*, Rational design of alkali-resistant NO reduction catalysts using a stable hexagonal V-doped MoO3 support for alkali trapping, ChemCatChem 10 (2018) 3999-4003.

[156] C. Li, Z.W. Huang, Y.X. Chen, X.N. Liu, J.X. Chen, W.Y. Qu, Z. Ma, X.F. Tang*, Optimizing selective catalytic reduction of NO with NH3 on Fe2O3/WO3 via redox-acid synergy, ChemCatChem 10 (2018) 3990-3994.

[155] Y.X. Chen, W.Y. Qu, C. Li, J.X. Chen, Z. Ma, X.F. Tang*, Ultra-low-temperature ozone abatement on α-MnO2(001) facets with down-shifted lowest unoccupied orbitals, Industrial & Engineering Chemistry Research 57 (2018) 12590-12594.

[154] J.X. Chen, J.Y. Gao, Y.X. Chen, X.N. Liu, C. Li, W.Y. Qu, Z. Ma, X.F. Tang*, Electronic-structure-dependent performance of single-site potassium catalysts for formaldehyde emission control, Industrial & Engineering Chemistry Research 57 (2018) 12352-12357.

[153] Z.D. Liu, K. Sun, M.Z. Wei, Z. Ma*, Phosphorus-doped cerium vanadate nanorods with enhanced photocatalytic activity, Journal of Colloid and Interface Science 531 (2018) 618-627.

[152] J.L. Zhang, Z. Ma*, Ag3VO4/BiOIO3 heterojunction with enhanced visible-light-driven catalytic activity, Journal of the Taiwan Institute of Chemical Engineers 88 (2018) 177-185.

[151] J.L. Zhang, Z. Ma*, Ag-Ag2CO3/Bi2MoO6 composites with enhanced visible-light-driven catalytic activity, Journal of the Taiwan Institute of Chemical Engineers 88 (2018) 121-129.

[150] T. Meng, N. Ren*, Z. Ma*, Effect of copper precursors on the catalytic performance of Cu-ZSM-5 catalysts in N2O decomposition, Chinese Journal of Chemical Engineering 28 (2018) 1051-1058.

[149] J.L. Zhang, Z. Ma*, Porous g-C3N4 with enhanced adsorption and visible-light photocatalytic performance for removing aqueous dyes and tetracycline hydrochloride, Chinese Journal of Chemical Engineering 26 (2018) 753-760.

[148] J.L. Zhang, Z. Ma*, Ag-Ag3VO4/AgIO3 composites with enhanced visible-light-driven catalytic activity, Journal of Colloid and Interface Science 524 (2018) 16-24.

[147] J.Y. Gao, Z.W. Huang, Y.X. Chen, J. Wang, X. Gu, Z. Ma, J.M. Chen, X.F. Tang*, Activating inert alkali metal ions by electron transfer from manganese oxide for formaldehyde abatement, Chemistry – A European Journal 24 (2018) 681-689.

[146] H. Liu, Z. Ma*, Rh2O3/monoclinic CePO4 composite catalysts for N2O decomposition and CO oxidation, Chinese Journal of Chemical Engineering 26 (2018) 109-115.

[145] J.L. Zhang, Z. Ma*, Ag3VO4/AgI composites for photocatalytic degradation of dyes and tetracycline hydrochloride under visible light, Materials Letters 216 (2018) 216-218.

[144] S.Q. Jiang, X.N. Ye*, R.Y. Wang, Y. Tao, Z. Ma, X. Yang, J.M. Chen*, Measurements of nonvolatile size distribution and its link to traffic soot in urban Shanghai, Science of the Total Environment 615 (2018) 452-461.

2017年(25篇)

[143] J.L. Zhang, Z. Ma*, AgI/β-Ag2MoO4 heterojunctions with enhanced visible-light-driven catalytic activity, Journal of the Taiwan Institute of Chemical Engineers 81 (2017) 225-231.

[142] H. Liu, Z. Ma*, Rh2O3/hexagonal CePO4 nanocatalysts for N2O decomposition, Frontiers of Chemical Science and Engineering 11 (2017) 586-593.

[141] Y.X. Chen, Z.W. Huang, Z. Ma, J.M. Chen, X.F. Tang*, Fabrication, characterization, and stability of supported single-atom catalysts, Catalysis Science & Technology 7 (2017) 4250-4258.

[140] Q.Y. Zhang, L.H. Huang, S.F. Kang, C.C. Yin, Z. Ma, L.F. Cui*, Y.G. Wang*, CuO/Cu2O nanowire arrays grafted by reduced graphene oxide: Synthesis, characterization, and application in photocatalytic reduction of CO2, RSC Advances 7 (2017) 43642-43647.

[139] Y.X. Chen, Z.W. Huang, X. Gu, Z. Ma, J.M. Chen, X.F. Tang*, Top-down synthesis strategies: Maximum noble-metal atom efficiency in catalytic materials, Chinese Journal of Catalysis 38 (2017) 1588-1596.

[138] J.L. Zhang, Z. Ma*, Enhanced visible-light photocatalytic performance of Ag3VO4/Bi2WO6 heterojunctions in removing aqueous dyes and tetracycline hydrochloride, Journal of the Taiwan Institute of Chemical Engineers 78 (2017) 212-218.

[137] Y.X. Chen, Z.C.X. Dong, Z.W. Huang, M.J. Zhou, J.Y. Gao, J.X. Chen, C. Li, Z. Ma, J.M. Chen, X.F. Tang*, Tuning electronic states of catalytic sites enhances SCR activity of hexagonal WO3 by Mo framework substitution, Catalysis Science & Technology 7 (2017) 2467-2473.

[136] Y.X. Chen, J.Y. Gao, Z.W. Huang, M.J. Zhou, J.X. Chen, C. Li, Z. Ma, J.M. Chen, X.F. Tang*, Sodium rivals silver as single-atom active centers for catalyzing abatement of formaldehyde, Environmental Science & Technology 51 (2017) 7084-7090.

[135] B.B. Tu, Q.Q. Pang, H.S. Xu, X.M. Li, Y.L. Wang, Z. Ma, L.H. Weng, Q.W. Li*, Reversible redox activity in multicomponent metal-organic frameworks constructed from trinuclear copper pyrazolate building blocks, Journal of the American Chemical Society 139 (2017) 7998-8007.

[134] Y.Y. Xie, X.N. Ye*, Z. Ma, Y. Tao, R.Y. Wang, C. Zhang, X. Yang, J.M. Chen*, H. Chen, Insight into winter haze formation mechanisms based on aerosol hygroscopicity and effective density measurements, Atmospheric Chemistry and Physics 17 (2017) 7277-7290.

[133] W.Y. Qu, Y.X. Chen, Z.W. Huang, J.Y. Gao, M.J. Zhou, J.X. Chen, C. Li, Z. Ma, J.M. Chen, X.F. Tang*, Active tetrahedral iron sites of γ-Fe2O3 catalyzing NO reduction by NH3, Environmental Science & Technology Letters 4 (2017) 246-250.

[132] S. Liu, H.B. Zhou, Q.Y. Song, Z. Ma*, Synthesis of higher alcohols from CO2 hydrogenation over Mo-Co-K sulfide-based catalysts, Journal of the Taiwan Institute of Chemical Engineers 76 (2017) 18-26.

[131] J.L. Zhang, Z. Ma*, Flower-like Ag3VO4/BiOBr n-p heterojunction photocatalysts with enhanced visible-light-driven catalytic activity, Molecular Catalysis 436 (2017) 190-198.

[130] C.L. Li, Y.J. Hu, F. Zhang, J.M. Chen*, Z. Ma, X.N. Ye, X. Yang, L. Wang, X.F. Tang, R.H. Zhang, M. Mu, G.H. Wang, H.D. Kan, X.M. Wang, A. Mellouki, Multi-pollutants emissions from the burning of major agricultural residues in China and the related health-economic effects, Atmospheric Chemistry and Physics 17 (2017) 4957-4988.

[129] T. Meng, D.S. Mao*, Q.S. Guo, Z. Ma*, Effect of the Si/Al ratios of nanocrystalline HZSM-5 zeolite on the performance in catalytic conversion of ethanol to propylene, Journal of Nanoscience and Nanotechnology 17 (2017) 3779-3785.

[128] Y.F. Dai, S.D. Shen*, Z. Ma*, L.M. Ma, Z.S. Sun, J. Yu, C.Y. Wan, S. Han, D.S. Mao, G.Z. Lu*, High-surface-area mesoporous crystalline TiO2: Synthesis, characterization, and application as support for making stable Au catalysts, Journal of Nanoscience and Nanotechnology 17 (2017) 3772-3778.

[127] G.M. Yang, H.B. Yu, J.F. Zhang, H.F. Yin, Z. Ma*, S.H. Zhou*, AuPd@mesoporous SiO2: Synthesis and selectivity in catalytic hydrogenation/hydrodechlorination of p-chloronitrobenzene, Journal of Nanoscience and Nanotechnology 17 (2017) 3744-3750.

[126] B. Zhou, T. Meng, Y. Ren, T. Fan, Z. Ma*, Catalytic reduction of N2O by CO over mesoporous transition metal oxides, Journal of Nanoscience and Nanotechnology 17 (2017) 3709-3718.

[125] J.L. Zhang, Z. Ma*, Ag6Mo10O33/g-C3N4 1D-2D hybridized heterojunction as an efficient visible-light-driven photocatalyst, Molecular Catalysis 432 (2017) 285-291.

[124] Y.X. Chen, Z.W. Huang, M.J. Zhou, Z. Ma, J.M. Chen, X.F. Tang*, Single silver adatoms on nanostructured manganese oxide surfaces: Boosting oxygen activation for benzene abatement, Environmental Science & Technology 51 (2017) 2304-2311.

[123] H. Liu, Z. Ma*, Effect of different LaPO4 supports on the catalytic performance of Rh2O3/LaPO4 in N2O decomposition and CO oxidation, Journal of the Taiwan Institute of Chemical Engineers 71 (2017) 373-380.

[122] J.L. Zhang, Z. Ma*, Flower-like Ag2MoO4/Bi2MoO6 heterojunctions with enhanced photocatalytic activity under visible light irradiation, Journal of the Taiwan Institute of Chemical Engineers 71 (2017) 156-164.

[121] C.Y. Huang, Z. Ma*, C.X. Miao*, Y.H. Yue, W.M. Hua*, Z. Gao, Catalytic decomposition of N2O over Rh/Zn-Al2O3 catalysts, RSC Advances 7 (2017) 4243-4252.

[120] J.L. Zhang, Z. Ma*, Novel β-Ag2MoO4/g-C3N4 heterojunction catalysts with highly enhanced visible-light-driven photocatalytic activity, RSC Advances 7 (2017) 2163-2171.

[119] J.X. Chen, Y.X. Chen, M.J. Zhou, Z.W. Huang, J.Y. Gao, Z. Ma, J.M. Chen, X.F. Tang*, Enhanced performance of ceria-based NOx reduction catalysts by optimal support effect, Environmental Science & Technology 51 (2017) 473-478.

2016年(11篇)

[118] 林毅, 马臻*, PdOx/金属磷酸盐催化剂催化分解N2O, 复旦学报(自然科学版) 55 (2016) 737-743.

[117] L. Zheng, M.J. Zhou, Z.W. Huang, Y.X. Chen, J.Y. Gao, Z. Ma, J.M. Chen, X.F. Tang*, Self-protection mechanism of hexagonal WO3-based de-NOx catalysts against alkali poisoning, Environmental Science & Technology 50 (2016) 11951-11956.

[116] Y. Tao, X.N. Ye*, Z. Ma, Y.Y. Xie, R.Y. Wang, J.M. Chen*, X. Yang, S.Q. Jiang, Insights into different nitrate formation mechanisms from seasonal variations of secondary inorganic aerosols in Shanghai, Atmospheric Environment 145 (2016) 1-9.

[115] J.L. Zhang, H. Liu, Z. Ma*, Flower-like Ag2O/Bi2MoO6 p-n heterojunction with enhanced photocatalytic activity under visible light irradiation, Journal of Molecular Catalysis A: Chemical 424 (2016) 37-44.

[114] Y.W. Cui, H. Liu, Y. Lin, Z. Ma*, Metal phosphate-supported RuOx catalysts for N2O decomposition, Journal of the Taiwan Institute of Chemical Engineers 67 (2016) 254-262.

[113] C.L. Li, Y.J. Hu, J.M. Chen*, Z. Ma, X.N. Ye, X. Yang, L. Wang, X.M. Wang, A. Mellouki, Physicochemical properties of carbonaceous aerosol from agricultural residue burning: Density, volatility, and hygroscopicity, Atmospheric Environment 140 (2016) 94-105.

[112] T. Meng, P.F. Xie, H.F. Qin, H. Liu, W.M. Hua, X. Li*, Z. Ma*, Fe2O3/SiO2 nanowires formed by hydrothermally transforming SiO2 spheres in the presence of Fe3+: Synthesis, characterization, and catalytic properties, Journal of Molecular Catalysis A: Chemical 421 (2016) 109-116.

[111] C.Y. Huang, Y.X. Jiang, Z. Ma*, P.F. Xie, Y. Lin, T. Meng, C.X. Miao*, Y.H. Yue, W.M. Hua*, Z. Gao, Correlation among preparation methods/conditions, physicochemical properties, and catalytic performance of Rh/hydroxyapatite catalysts in N2O decomposition, Journal of Molecular Catalysis A: Chemical 420 (2016) 73-81.

[110] H. Liu, Y. Lin, Z. Ma*, Au/LaPO4 nanowires: Synthesis, characterization, and catalytic CO oxidation, Journal of the Taiwan Institute of Chemical Engineers 62 (2016) 277-284.

[109] Z. Zheng*, J.Q. Gao, Z. Ma, Z.F. Wang, X.Y. Yang, Z.F. Wang, T. Jacquet, G.T. Fu, Urban flooding in China: Main causes and policy recommendations, Hydrological Processes 30 (2016) 1149-1152.

[108] H. Liu, Y. Lin, Z. Ma*, Rh2O3/mesoporous MOx-Al2O3 (M = Mn, Fe, Co, Ni, Cu, Ba) catalysts: Synthesis, characterization, and catalytic applications, Chinese Journal of Catalysis 37 (2016) 73-82.

2015年(14篇)

[107] C.L. Li, Z. Ma, J.M. Chen*, X.M. Wang, X.N. Ye, L. Wang, X. Yang, H.D. Kan, D.J. Donaldson*, A. Mellouki, Evolution of biomass burning smoke particles in the dark, Atmospheric Environment 120 (2015) 244-252.

[106] P.F. Xie, Z. Ma*, T. Meng, C.Y. Huang, C.X. Miao*, Y.H. Yue, W.M. Hua*, Z. Gao, Active Fe species of Fe2O3/Fe-Silicalite-1 nanowires in N2O decomposition, Journal of Molecular Catalysis A: Chemical 409 (2015) 50-58.

[105] T. Meng, Y. Lin, Z. Ma*, Effect of the crystal size of Cu-ZSM-5 on the catalytic performance in N2O decomposition, Materials Chemistry and Physics 163 (2015) 293-300.

[104] P.F. Xie, Y.J. Luo, Z. Ma*, C.Y. Huang, C.X. Miao*, W.M. Hua*, Y.H. Yue, Z. Gao, Catalytic decomposition of N2O over Fe-ZSM-11 catalysts prepared by different methods: Nature of active Fe species, Journal of Catalysis 330 (2015) 311-322.

[103] Y. Wang, H. Liu, P.P. Hu, Z.W. Huang, J.Y. Gao, F. Xu, Z. Ma*, X.F. Tang*, Enhancing the catalytic activity of Hollandite manganese oxide by supporting sub-10 nm ceria particles, Catalysis Letters 145 (2015) 1880-1884.

[102] T. Meng, N. Ren*, Z. Ma*, Silicalite-1@Cu-ZSM-5 core-shell catalysts for N2O decomposition, Journal of Molecular Catalysis A: Chemical 404 (2015) 233-239.

[101] H.M. Qin, X.S. Qian, T. Meng, Y. Lin, Z. Ma*, Pt/MOx/SiO2, Pt/MOx/TiO2, and Pt/MOx/Al2O3 catalysts for CO oxidation, Catalysts 5 (2015) 606-633.

[100] S.S. Sun, D.S. Mao*, J. Yu, Z.Q. Yang, G.Z. Lu, Z. Ma, Low-temperature CO oxidation on CuO/CeO2 catalysts: The significant effect of copper precursor and calcination temperature, Catalysis Science & Technology 5 (2015) 3166-3181.

[99] Y. Lin, T. Meng, Z. Ma*, Catalytic decomposition of N2O over RhOx supported on metal phosphates, Journal of Industrial and Engineering Chemistry 28 (2015) 138-146.

[98] C.Y. Huang, Z. Ma*, P.F. Xie, Y.H. Yue, W.M. Hua*, Z. Gao, Hydroxyapatite-supported rhodium catalysts for N2O decomposition, Journal of Molecular Catalysis A: Chemical 400 (2015) 90-94.

[97] P.F. Xie, Y.J. Luo, Z. Ma*, L.Y. Wang, C.Y. Huang, Y.H. Yue, W.M. Hua*, Z. Gao, CoZSM-11 catalysts for N2O decomposition: Effect of preparation methods and nature of active sites, Applied Catalysis B: Environmental 170 (2015) 34-42.

[96] X.J. Zhang, P.P. Zhang, H.B. Yu, Z. Ma*, S.H. Zhou*, Mesoporous KIT-6 supported Pd-MxOy (M = Ni, Co, Fe) catalysts with enhanced selectivity for p-chloronitrobenzene hydrogenation, Catalysis Letters 145 (2015) 784-793.

[95] H. Liu, K. Tao, H.B. Yu, C. Zhou, Z. Ma*, D.S. Mao*, S.H. Zhou*, Effect of pretreatment gases on the performance of WO3/SiO2 catalysts in the metathesis of 1-butene and ethene to propene, Comptes Rendus Chimie 18 (2015) 644-653.

[94] Z. Ma*, F. Tao*, X.L. Gu, Development of new gold catalysts for removing CO from H2, in: Heterogeneous Catalysis at Nanoscale for Energy Applications, F. Tao, W.A. Schneider, P.V. Kamat (eds.), Wiley-Blackwell, New York (2015) 217-238.

2014年(14篇)

[93] X.S. Qian, H.M. Qin, T. Meng, Y. Lin, Z. Ma*, Metal phosphate-supported Pt catalysts for CO oxidation, Materials 7 (2014) 8105-8130.

[92] Q.Y. Zhang, B. Li, Z. Ma, Y.G. Wang*, X. Li*, One-step nanocasting synthesis of mesostructured magnetic Fe/γ-Fe2O3/graphitic carbon composites, Journal of Alloys and Compounds 617 (2014) 713-715.

[91] P.F. Xie, L.F. Chen, Z. Ma*, C.Y. Huang, Y.H. Yue, W.M. Hua*, Y. Tang*, Z. Gao, Hydrothermal conversion of Fe2O3/SiO2 spheres into Fe2O3/Silicalite-1 nanowires, Microporous and Mesoporous Materials 200 (2014) 52-60.

[90] W. Zou, P.F. Xie, W.M. Hua, Y.D. Wang, D.J. Kong, Y.H. Yue*, Z. Ma*, W.M. Yang, Z. Gao, Catalytic decomposition of N2O over Cu-ZSM-5 nanosheets, Journal of Molecular Catalysis A: Chemical 394 (2014) 83-88.

[89] Y. Tao, X.N. Ye*, Z. Ying, Z. Ma, J.M. Chen*, Size distribution of water-soluble inorganic ions in urban aerosols in Shanghai, Atmospheric Pollution Research 5 (2014) 639-647.

[88] Y. Ren*, Z. Ma*, S. Dai, Nanosize control on porous β-MnO2 and their catalytic activity in CO oxidation and N2O decomposition, Materials 7 (2014) 3547-3556.

[87] C. Lin, K. Tao, D.Y. Hua, Z. Ma*, S.H. Zhou*, Transformation of Au3M/SiO2 (M = Ni, Co, Fe) into Au-MOx/SiO2 catalysts for the reduction of p-nitrophenol, Catalysis Letters 144 (2014) 1001-1008.

[86] P.F. Xie, Z. Ma*, H.B. Zhou, C.Y. Huang, Y.H. Yue, W. Shen, H.L. Xu, W.M. Hua*, Z. Gao, Catalytic decomposition of N2O over Cu-ZSM-11 catalysts, Microporous and Mesoporous Materials 191 (2014) 112-117.

[85] Z. Ma*, Cobalt oxide catalysts for environmental remediation, Current Catalysis 3 (2014) 15-26.

[84] L.P. Qian*, Z. Ma, Y. Ren, H.C. Shi, B. Yue, S.J. Feng, J.Z. Shen, S.H. Xie, Investigation of La promotion mechanism on Ni/SBA-15 catalysts in CH4 reforming with CO2, Fuel 122 (2014) 47-53.

[83] Z. Ma*, S. Dai, Stabilizing gold nanoparticles by solid supports, in: Heterogeneous Gold Catalysts and Catalysis, Z. Ma, S. Dai (eds.), Royal Society of Chemistry, Cambridge (2014) 1-26.

[82] Z. Ma*, F. Tao*, Metal salt-based gold nanocatalysts, in: Metal Nanoparticles for Catalysis: Advances and Applications, F. Tao (ed.), Royal Society of Chemistry, Cambridge (2014) 157-171.

[81] Z. Ma*, F. Zaera, Heterogeneous catalysis by metals, in: Encyclopedia of Inorganic and Bioinorganic Chemistry, R.A. Scott (ed.), John Wiley & Sons, Chichester (2014) eibc0079 (16 pp).

[80] Z. Ma, F. Zaera*, 催化剂表面的手性修饰, 非均相催化剂设计, U.S. Ozkan编, 中国石化催化剂有限公司译, 中国石化出版社, 北京 (2014) 115-143.

2013年(8篇)

[79] H. Liu, C. Lin, Z. Ma*, H.B. Yu*, S.H. Zhou, Gold nanoparticles on mesoporous SiO2-coated magnetic Fe3O4 spheres: A magnetically separatable catalyst with good thermal stability, Molecules 18 (2013) 14258-14267.

[78] C. Lin, K. Tao, D.Y. Hua*, Z. Ma*, S.H. Zhou*, Size effect of gold nanoparticles in catalytic reduction of p-nitrophenol with NaBH4, Molecules 18 (2013) 12609-12620.

[77] J.L. Wang, H.B. Yu, Z. Ma*, S.H. Zhou*, Enhanced stability of CaO and/or La2O3 promoted Pd/Al2O3 egg-shell catalysts in partial oxidation of methane to syngas, Molecules 18 (2013) 8289-8297.

[76] F. Tao*, Z. Ma*, Water-gas shift on gold catalysts: Catalyst systems and fundamental insights, Physical Chemistry Chemical Physics 15 (2013) 15260-15270.

[75] Y. Ren, Z. Ma, R.E. Morris, Z. Liu, F. Jiao, S. Dai, P.G. Bruce*, A solid with a hierarchical tetramodal micro-meso-macro pore size distribution, Nature Communications 4 (2013) 2015 (7 pp).

[74] Z. Ma*, Y. Ren*, Y.B. Lu, P.G. Bruce, Catalytic decomposition of N2O on ordered crystalline metal oxides, Journal of Nanoscience and Nanotechnology 13 (2013) 5093-5103.

[73] Z. Ma*, B. Zhou, Y. Ren*, Crystalline mesoporous transition metal oxides: Hard-templating synthesis and application in environmental catalysis, Frontiers of Environmental Science & Engineering 7 (2013) 341-355.

[72] X.N. Ye*, C. Tang, Z. Ying, J.M. Chen*, Z. Ma, L.D. Kong, X. Yang, W. Gao, F.H. Geng, Hygroscopic growth of urban aerosol particles during the 2009 Mirage-Shanghai Campaign, Atmospheric Environment 64 (2013) 263-269.

2012年(5篇)

[71] 操婧婷, 周海东*, 黄志伟, 马臻*, 唐幸福*, 铁锰氧化物对NH3低温选择性还原NO的催化活性, 复旦学报(自然科学版) 51 (2012) 632-636 & 643.

[70] Y. Ren*, Z. Ma*, P.G. Bruce, Ordered mesoporous NiCoMnO4: Synthesis and application in energy storage and catalytic decomposition of N2O, Journal of Materials Chemistry 22 (2012) 15121-15127.

[69] Y. Ren, Z. Ma*, P.G. Bruce*, Ordered mesoporous metal oxides: Synthesis and applications, Chemical Society Reviews 41 (2012) 4909-4927.

[68] Z. Ma*, Y. Ren*, P.G. Bruce, Co3O4-KIT-6 composite catalysts: Synthesis, characterization, and application in catalytic decomposition of N2O, Journal of Nanoparticle Research 14 (2012) 874 (11pp).

[67] Y. Ren*, Z. Ma*, P.G. Bruce, Transformation of mesoporous Cu/Cu2O into porous Cu2O nanowires in ethanol, CrystEngComm 14 (2012) 2617-2620.

2011年(8篇)

[66] Y. Ren*, Z. Ma, P.G. Bruce, Ordered mesoporous NiMn2Ox with hematite or spinel structure: Synthesis and application in electrochemical energy storage and catalytic conversion of N2O, CrystEngComm 13 (2011) 6955-6959.

[65] X.N. Ye*, Z. Ma, J.C. Zhang, H.H. Du, J.M. Chen*, H. Chen, X. Yang, W. Gao, F.H. Geng, Important role of ammonia on haze formation in Shanghai, Environmental Research Letters 6 (2011) 024019 (5 pp).

[64] Z. Ma*, S. Dai*, Design of novel structured gold nanocatalysts, ACS Catalysis 1 (2011) 805-818.

[63] Y. Ren, P.G. Bruce*, Z. Ma*, Solid-solid conversion of ordered crystalline mesoporous metal oxides under reducing atmosphere, Journal of Materials Chemistry 21 (2011) 9312-9318.

[62] R. Mayes, P. Fulvio, Z. Ma, S. Dai*, Phosphorylated mesoporous carbon as a solid-acid catalyst, Physical Chemistry Chemical Physics 13 (2011) 2492-2494.

[61] H.F. Yin, Z. Ma, M.F. Chi, S. Dai*, Heterostructured catalysts prepared by dispersing Au@Fe2O3 core-shell structures on supports and their performance in CO oxidation, Catalysis Today 160 (2011) 87-95.

[60] Z. Ma*, S. Dai*, Development of novel supported gold catalysts: A materials perspective, Nano Research 4 (2011) 3-32.

[59] X.N. Ye*, Z. Ma, D.W. Hu, X. Yang, J.M. Chen*, Size-resolved hygroscopicity of submicrometer urban aerosols in Shanghai during wintertime, Atmospheric Research 99 (2011) 353-364.

2010年(8篇)

[58] H.F. Yin, Z. Ma*, H.G. Zhu, M.F. Chi, S. Dai*, Evidence for and mitigation of the encapsulation of gold nanoparticles within SiO2 matrix upon calcining Au/SiO2 catalysts at high temperatures: Implication to catalyst deactivation, Applied Catalysis A: General 386 (2010) 147-156.

[57] J. Zhang, D.S. Zhao*, Z. Ma, Y.N. Wang, Phase-boundary photocatalytic oxidation of dibenzothiophene over amphiphic Ti-MCM-41 molecular sieve, Catalysis Letters 138 (2010) 111-115.

[56] Z. Ma*, H.F. Yin, S. Dai*, Influence of preparation methods on the performance of metal phosphate-supported gold catalysts in CO oxidation, Catalysis Letters 138 (2010) 40-45.

[55] E.W. Hagaman*, J. Jiao, B.H. Chen, Z. Ma, H.F. Yin, S. Dai, Surface alumina species on modified titanium oxide: A solid-state 27Al MAS and 3QMAS NMR investigation of catalyst supports, Solid State Nuclear Magnetic Resonance 37 (2010) 82-90.

[54] H.F. Yin, Z. Ma, M.F. Chi, S. Dai*, Activation of dodecanethiol-capped gold catalysts for CO oxidation by treatment with KMnO4 or K2MnO4, Catalysis Letters 136 (2010) 209-221.

[53] Z. Ma, H.F. Yin, S. Dai*, Performance of Au/MxOy/TiO2 catalysts in water-gas shift reaction, Catalysis Letters 136 (2010) 83-91.

[52] J.N. Zhang, Z. Ma*, J. Jiao, H.F. Yin, W.F. Yan, E.W. Hagaman, J.H. Yu, S. Dai*, Surface functionalization of mesoporous silica SBA-15 by liquid-phase grafting of zirconium phosphate, Microporous and Mesoporous Materials 129 (2010) 200-209.

[51] Z. Ma, J.H. Yu, S. Dai*, Preparation of inorganic materials using ionic liquids, Advanced Materials 22 (2010) 261-285.

2009年(9篇)

[50] J.N. Zhang, Z. Ma, J. Jiao, H.F. Yin, W.F. Yan, E.W. Hagaman, J.H. Yu*, S. Dai*, Layer-by-layer grafting of titanium phosphate onto mesoporous silica SBA-15 surfaces: Synthesis, characterization, and applications, Langmuir 25 (2009) 12541-12549.

[49] J.F. Lai, Z. Ma, L. Mink, L.J. Mueller, F. Zaera*, Influence of peripheral groups on the physical and chemical behavior of cinchona alkaloids, Journal Physical Chemistry B 113 (2009) 11696-11701.

[48] M.J. Li, Z.L. Wu, Z. Ma, V. Schwartz, D.R. Mullins, S. Dai, S.H. Overbury*, CO oxidation on Au/FePO4 catalyst: Reaction pathways and nature of Au sites, Journal of Catalysis 266 (2009) 98-105.

[47] Y. Ren, Z. Ma, L.P. Qian, S. Dai, H.Y. He, P.G. Bruce*, Ordered crystalline mesoporous oxides as catalysts for CO oxidation, Catalysis Letters 131 (2009) 146-154.

[46] S.H. Zhou, Z. Ma, G.A. Baker, A.J. Rodinone, Q. Zhu, H.M. Luo, Z.L. Wu, S. Dai*, Self-assembly of metal-oxide nanoparticles into hierarchically patterned porous architectures using ionic liquid/oil emulsions, Langmuir 25 (2009) 7229-7233.

[45] B. Lee*, Z. Ma, Z.T. Zhang, C. Park, S. Dai*, Influences of synthesis conditions and mesoporous structures on the gold nanoparticles supported on mesoporous silica hosts, Microporous and Mesoporous Materials 122 (2009) 160-167.

[44] S.H. Zhou, Z. Ma, H.F. Yin, Z.L. Wu, B. Eichhorn, S.H. Overbury, S. Dai*, Low-temperature solution-phase synthesis of NiAu alloy nanoparticles via butyllithium reduction: Influences of synthesis details and application as the precursor to active Au-NiO/SiO2 catalysts through proper pretreatment, Journal of Physical Chemistry C 113 (2009) 5758-5765.

[43] Z. Ma, F. Zaera*, Chiral modification of catalytic surfaces, in: Design of Heterogeneous Catalysts: New Approaches based on Synthesis, Characterization and Modelling, U.S. Ozkan (ed.), Wiley-VCH, Weinheim (2009) 113-140.

[42] Z. Ma, S.H. Overbury, S. Dai*, Gold nanoparticles as chemical catalysts, in: Nanomaterials: Inorganic and Bioinorganic Perspectives, C.M. Lukehart, R.A. Scott (eds.), John Wiley & Sons, Chichester (2009) 247-266.

2008年(10篇)

[41] Z. Ma*, Reflections on applied catalysis and fundamental model studies, in: Heterogeneous Catalysis Research Progress, M.B. Gunther (ed.), Nova Science Publishers, New York (2008) 235-266.

[40] Z. Ma, H.F. Yin, S.H. Overbury, S. Dai*, Metal phosphates as a new class of supports for gold nanocatalysts, Catalysis Letters 126 (2008) 20-30.

[39] I. Lee, Z. Ma, S. Kaneko, F. Zaera*, 1-(1-Naphthyl)ethylamine adsorption on platinum surfaces: On the mechanism of chiral modification in catalysis, Journal of the American Chemical Society 130 (2008) 14597-14604.

[38] Z. Ma, S. Dai*, Materials design of advanced performance metal catalysts, Materials Technology 23 (2008) 81-87.

[37] D.H. Wang, Z. Ma, S. Dai, J. Liu*, Z.M. Nie, M.H. Engelhard, Q.S. Huo, C.M. Wang, R. Kou, Low-temperature synthesis of tunable mesoporous crystalline transition metal oxides and applications as Au catalyst supports, Journal of Physical Chemistry C 112 (2008) 13499-13509.

[36] Z. Ma, S. Brown, J.Y. Howe, S.H. Overbury, S. Dai*, Surface modification of Au/TiO2 catalysts by SiO2 via atomic layer deposition, Journal of Physical Chemistry C 112 (2008) 9448-9457.

[35] H.F. Yin, Z. Ma, S.H. Overbury, S. Dai*, Promotion of Au(en)2Cl3-derived Au/fumed SiO2 by treatment with KMnO4, Journal of Physical Chemistry C 112 (2008) 8349-8358.

[34] L. Mink, Z. Ma, R.A. Olsen, J.N. James, D.S. Sholl, L.J. Mueller, F. Zaera*, The physico-chemical properties of cinchona alkaloids responsible for their unique performance in chemical catalysis, Topics in Catalysis 48 (2008) 120-127.

[33] Z. Ma, H.G. Zhu, W.F. Yan, S.H. Overbury, S. Dai*, Functionalized mesoporous materials for gold catalysis, in: Nanoporous Materials: Proceedings of the 5th International Symposium, A. Sayari, M. Jaroniec (eds.), World Scientific Publishing, Singapore (2008) 529-542.

[32] W.F. Yan, Z. Ma, S.M. Mahurin, J. Jiao, E.W. Hagaman, S.H. Overbury, S. Dai*, Novel Au/TiO2/Al2O3·xH2O catalysts for CO oxidation, Catalysis Letters 121 (2008) 209-218.

2007年(6篇)

[31] Z. Ma, I. Lee, F. Zaera*, Factors controlling adsorption equilibria from solution onto solid surfaces: The uptake of cinchona alkaloids on platinum surfaces, Journal of the American Chemical Society 129 (2007) 16083-16090.

[30] Z. Ma, C.D. Liang, S.H. Overbury, S. Dai*, Gold nanoparticles on electroless-deposition-derived MnOx/C: Synthesis, characterization, and catalytic CO oxidation, Journal of Catalysis 252 (2007) 119-126.

[29] H.G. Zhu, Z. Ma, S.H. Overbury, S. Dai*, Rational design of gold catalysts with enhanced thermal stability: Post modification of Au/TiO2 by amorphous SiO2 decoration, Catalysis Letters 116 (2007) 128-135.

[28] Z. Ma, S. Brown, S.H. Overbury, S. Dai*, Au/PO43-/TiO2 and PO43-/Au/TiO2 catalysts for CO oxidation: Effect of synthesis details on catalytic performance, Applied Catalysis A: General 327 (2007) 226-237.

[27] Z. Ma, S.H. Overbury, S. Dai*, Au/MxOy/TiO2 catalysts for CO oxidation: Promotional effect of main-group, transition, and rare-earth metal oxide additives, Journal of Molecular Catalysis A: Chemical 273 (2007) 186-197.

[26] H.G. Zhu, Z. Ma, J.C. Clark, Z.W. Pan, S.H. Overbury, S. Dai*, Low-temperature CO oxidation on Au/fumed SiO2-based catalysts prepared from Au(en)2Cl3 precursor, Applied Catalysis A: General 326 (2007) 89-99.

2006年(4篇)

[25] Z. Ma, F. Zaera*, Competitive chemisorption between pairs of cinchona alkaloids and related compounds from solution onto platinum surfaces, Journal of the American Chemical Society 128 (2006) 16414-16415.

[24] Z. Ma*, Solvent effect on CO oxidation as a novel diagnosing tool to pin down low-coverage CO at the liquid-solid interface: An in situ infrared study, Journal of Colloid and Interface Science 304 (2006) 419-430.

[23] Z. Ma, F. Zaera*, Organic chemistry on solid surfaces, Surface Science Reports 61 (2006) 229-281.

[22] Z. Ma, F. Zaera*, Characterization of heterogeneous catalysts, in: Surface and Nanomolecular Catalysis, R.M. Richards (ed.), Taylor & Francis (CRC Press), Boca Raton (2006) 1-37.

2005年(2篇)

[21] Z. Ma, F. Zaera*, Heterogeneous catalysis by metals, in: Encyclopedia of Inorganic Chemistry (Second Edition), R.B. King (ed.), John Wiley & Sons, Chichester (2005) 1768-1784.

[20] Z. Ma, F. Zaera*, Role of the solvent in the adsorption-desorption equilibrium of cinchona alkaloids between solution and a platinum surface: Correlations among solvent polarity, cinchona solubility, and catalytic performance, Journal of Physical Chemistry B 109 (2005) 406-414.

2004年(2篇)

[19] Z. Ma, F. Zaera*, In situ reflection-absorption infrared spectroscopy at the solid-liquid interface: Decomposition of organic molecules on polycrystalline platinum substrates, Catalysis Letters 96 (2004) 5-12.

[18] Z. Ma, I. Lee, J. Kubota, F. Zaera*, In situ characterization of the adsorption of cinchona chiral modifiers on platinum surfaces, Journal of Molecular Catalysis A: Chemical 216 (2004) 199-207.

2003年(3篇)

[17] Z. Ma, J. Kubota, F. Zaera*, The influence of dissolved gases on the adsorption of cinchonidine from solution onto Pt surfaces: An in situ infrared study, Journal of Catalysis 219 (2003) 404-416.

[16] J. Kubota, Z. Ma, F. Zaera*, In-situ characterization of adsorbates in solid-liquid interfaces by reflection-absorption infrared spectroscopy, Langmuir 19 (2003) 3371-3376.

[15] 马臻, 陶泳, 高滋*, 氟里昂水解的催化剂体系, 化学世界 44 (2003) 157-160.

2002年(2篇)

[14] N. Ma, Z. Ma, Y.H. Yue, Z. Gao*, Reaction testing of phenol hydroxylation and cyclohexane oxidation by gas chromatography: Influence of residual hydrogen peroxide, Journal of Molecular Catalysis A: Chemical 184 (2002) 361-370.

[13] Z. Ma, Y.H. Yue, X.Y. Deng, Z. Gao*, Nanosized anatase TiO2 as precursor for preparation of sulfated titania catalysts, Journal of Molecular Catalysis A: Chemical 178 (2002) 97-104.

2001年(2篇)

[12] X.Y. Deng, Z. Ma, Y.H. Yue, Z. Gao*, Catalytic hydrolysis of dichlorodifluoromethane over nanosized titania-supported titanyl sulfate, Journal of Catalysis 204 (2001) 200-208.

[11] 马臻, 华伟明, 高滋*, 氟里昂催化分解研究进展, 化学通报 (2001) 339-344.

2000年(9篇)

[10] 乐英红, 马臻, 华伟明, 高滋*, 二氧化钛介孔分子筛的合成和表征, 化学学报 58 (2000) 777-780.

[9] 马臻, 华伟明, 唐颐, 高滋*, 用以分解氟里昂-12的新型催化剂WO3/Al2O3, 应用化学 17 (2000) 319-321.

[8] Z. Ma, W.M. Hua, Y. Tang, Z. Gao*, Catalytic hydrolysis of CFC-12 over solid acid Ti(SO4)2, Chinese Chemical Letters 11 (2000) 311-314.

[7] Z. Ma, W.M. Hua, Y. Tang, Z. Gao*, A novel CFC-12 hydrolysis catalyst: WO3/SnO2, Chinese Chemical Letters 11 (2000) 87-88.

[6] W.M. Hua, F. Zhang, Z. Ma, Y. Tang, Z. Gao*, WO3/ZrO2 solid acid as a catalyst for the decomposition of chlorofluorocarbon (CFC-12), Chemical Research in Chinese Universities 16 (2000) 185-187.

[5] Z. Ma, W.M. Hua, Y. Tang, Z. Gao*, Catalytic decomposition of CFC-12 on solid acids SO42-/MxOy (M = Zr, Ti, Sn, Fe, Al), Chinese Journal of Chemistry 18 (2000) 341-345.

[4] Z. Ma, W.M. Hua, Y. Tang, Z. Gao*, Catalytic decomposition of CFC-12 over solid acids WO3/MxOy (M = Ti, Sn, Fe), Journal of Molecular Catalysis A: Chemical 159 (2000) 335-345.

[3] W.M. Hua, F. Zhang, Z. Ma, Y. Tang, Z. Gao*, Catalytic hydrolysis of CFC-12 over WO3/ZrO2, Catalysis Letters 65 (2000) 85-89.

[2] Z. Ma, W.M. Hua, Y. Tang, Z. Gao*, Catalytic decomposition of CFC-12 over heteropolyacids, 催化学报 21 (2000) 3-4.

1999年(1篇)

[1] Z. Ma, W.M. Hua, Y. Tang, Z. Gao*, Catalytic decomposition of CFC-12 over WO3/TiO2, Chemistry Letters (1999) 1215-1216.

报刊文章

2021年

[205] 马臻《习以为常的拖延症和不作为》中国科学报2021-10-19(7).

[204] 马臻《抓住科学素质建设中的关键问题》社会科学报2021-9-2(4).

[203] 马臻《硕士生如何选导师》中国研究生2021(8): 54-57.

[202] 马臻《为<中国研究生>写稿》中国研究生2021(5): 42-43.

[201] 马臻《做科研不顺?没时间找工作?解密读研时间管理》中国研究生2021(4): 42-45.

[200] 马臻《导师不让参加自选实习,矛盾如何解?》文汇报2021-3-26(6).

[199] 马臻《“四栖教授”之乐》中国科学报2021-2-25(7).

[198] 马臻《如何撰写科研论文的讨论部分》中国研究生2021(1): 72-75.

[197] 马臻《教授,慢下来!》中国科学报2021-1-14(7).

[196] 马臻《让更多精品讲座进校园》南方周末2021-1-7(B15).

[195] 高效江,马臻《高校环境专业课程思政建设实践》2020新时代高校环境教学改革与创新研讨会论文集,高等教育出版社,2021: 59-61.

2020年(22篇)

[194] 马臻《硕士生教育面临的矛盾及化解对策》《研究生教育论坛》2016-2020精华版2020: 27-28.

[193] 马臻《“双一流”建设不应“降维”》南方周末2020-12-10(B15).

[192] 马臻《应聘面试要学会“讲故事”》中国研究生2020(11): 59-61.

[191] 马臻《学术写作和通俗写作是相通的》语文学习2020(10): 86.

[190] 马臻《“绩点为王”对不对?》南方周末 2020-10-29(B15).

[189] 马臻《城市治理助力美好生活》人民日报2020-10-27(5).

[188] 马臻《如何撰写科研论文的引言部分》中国研究生2020(9): 48-51.

[187] 马臻《学习写作不应止于高考》南方周末2020-9-10(B15).

[186] 马臻《大学写作课成刚需,如何跨越理想和现实的鸿沟》文汇报2020-8-28(8).

[185] 马臻《读研要使巧劲》中国研究生2020(8): 22-24.

[184] 马臻《如何借助PPT做好你的报告》中国研究生2020(7): 61-64.

[183] 马臻《做青年学生的引路人》中国青年报2020-7-14(3).

[182] 马臻《破除“唯论文”要谨防理解误区》研究生教育论坛2020(24): 8-10.

[181] 马臻《大学生就业要早早规划》南方周末2020-7-9(B15).

[180] 马臻《理性分析研究生延期毕业现象》中国研究生2020(5): 58-61.

[179] 马臻《硕士生教育面临的矛盾及化解对策》研究生教育论坛2020(23): 41-42.

[178] 马臻《博士水平的学业自救》大学生2020(4): 54-55.

[177] 马臻《因地制宜坚持学习》人民日报2020-3-23(7).

[176] 马臻《就业,你准备好了吗?》中国研究生2020(3): 70-73.

[175] 马臻《“象牙塔”里的压力和奋斗》科技导报2020(4): 118-120.

[174] 马臻《考研面试的四大雷区》中国研究生2020(2): 40-43.

[173] 马臻《对研究生创新创业教育现状的思考》研究生教育论坛2020(22): 39-40.

[172] 马臻《研究和职业的关系“非此即彼”?》中国科学报2020-1-9(8).

2019年(30篇)

[171] 马臻《在立德树人背景下,导师应加强对研究生人文关怀》立德树人,内涵发展,提高工科研究生教育质量,清华大学出版社,2019: 13-17.

[170] 马臻《维护研究生招生面试的科学性和严肃性》研究生教育论坛2019(21): 15-16.

[169] 马臻《进高校工作,研究生需要知道的那些事》中国研究生2019(9): 42-44.

[168] 马臻《从管理学中吸取养分,助力研究生教育实践》研究生教育论坛2019(20): 76-78.

[167] 景云《研究生应学会与导师沟通》中国研究生2019(8): 40-42.

[166] 马臻《导师寄语:当你遇到迷惘》中国研究生2019(8): 17-19.

[165] 马臻《澄清对研究生教育的误解》中国研究生2019(6): 56-59.

[164] 马臻《“爬藤”成功又如何?》南方周末2019-6-13(B15).

[163] 马臻《导师应践行教育家精神》中国教师报2019-6-5(12).

[162] 马臻《评<生命中的重要他人——导师之于研究生>》中国科学报2019-5-31(7).

[161] 马臻《研究生回复审稿意见的门道》西安科技大学学报(社科版)2019(5): 52-54.

[160] 马臻《研究生回复审稿意见的门道》中国研究生2019(5): 52-54.

[159] 马臻《提高研究生教育质量 导师能做什么》研究生教育论坛2019(18): 27-28.

[158] 马臻《面对功利的家长》南方周末2019-5-16(B15).

[157] 马臻《研究生准备中期考核得“对路”》西安科技大学学报(社科版)2019(4): 56-59.

[156] 马臻《研究生准备中期考核得“对路”》中国研究生2019(4): 56-59.

[155] 马臻《读博的真相》大学生2019(4): 70-71.

[154] 马臻《别被奥数牵着鼻子走》南方周末2019-4-4(B15).

[153] 马臻《评上教授的他们为何还无法避免焦虑》教师博览:文摘版2019(3): 17-18.

[152] 马臻《研究生做科研得步步为营》中国研究生2019(3): 47-49.

[151] 马臻《写出学位论文就够了吗?》南方周末2019-3-21(B15).

[150] 马臻《梳理·挖掘·提炼·升华——让述职报告“飞”起来》科技导报2019(4): 107-108.

[149] 马臻《理解导师,认真读研》中国研究生2019(2): 43-45.

[148] 马臻《研究生师生矛盾及化解对策》学位与研究生教育2019(2): 1-5.

[147] 马臻《研究生面临的困境和导师的建议》西安科技大学学报(社科版)2019(1): 45-48.

[146] 马臻《研究生面临的困境和导师的建议》中国研究生2019(1): 45-48.

[145] 马臻《要兼顾稳定、公平、效率》南方周末2019-1-31(B19).

[144] 马臻《高校自主招生越严越好》南方周末2019-1-17(B12).

[143] 马臻《除了实验和论文,导师要不要跟学生谈人生?》文汇报2019-1-4(8).

[142] 马臻《申请制下我这样招博士》大学生2019(1): 78-79.

2018年(8篇)

[141] 马臻《大学教师也应阶段性自我评估》中国科学报2018-12-14(2).

[140] 马臻《大学教师:时间都去哪儿了》科技导报2018(21): 127-128.

[139] 马臻《研究生导师应做“引路人”》南方周末2018-11-15(B19).

[138] 马臻《评上教授的他们为何还无法避免焦虑》文汇报2018-9-22(4).

[137] 马臻《研究生师生矛盾及化解对策》上海研究生教育2018(2): 1-5.

[136] 马臻《导师心声》大学生2018(6): 34-35.

[135] 马臻《参加学术会议的乐趣和现实压力》科技导报2018(3): 123-124.

[134] 马臻,乐英红《高滋》中国催化名家(下册),科学出版社,2018: 49-64.

2017年(18篇)

[133] 马臻《做科研的难点和乐趣》科技导报2017(23): 111.

[132] 马臻《申请国家自然科学基金:前期准备和项目申请书的撰写》中国科学基金2017(6): 533-537.

[131] 马臻《鼓动课题组硕士生留校读博士:理想和挣扎》科技导报2017(21): 143.

[130] 马臻《研究生生涯发展和课题组生存发展:一对难以调和的矛盾》科技导报2017(20): 138.

[129] 马臻《按照审稿意见修改论文和写答辩信的体会》科技导报2017(19): 95.

[128] 马臻《研究生导师该如何与“90后”研究生相处》科技导报2017(14): 99.

[127] 马臻《国家自然科学基金项目申请书修改点评》科技导报2017(12): 99.

[126] 马臻《科学家应借助媒体发出自己的声音》科技导报2017(12): 97.

[125] 马臻《摆正职场心态,提高就业竞争力》安阳晚报2017-6-19(A14).

[124] 马臻《摆正职场心态,提高就业竞争力》文汇报2017-6-16(6).

[123] 马臻《不要比,做好自己的事》时代邮刊2017(10): 41.

[122] 马臻《产学研合作要有诚信》科技导报2017(10): 107.

[121] 马臻《科研职业路上的决策》科技导报2017(8): 98.

[120] 马臻《砥砺前行的大学青年教师》科技导报2017(5): 112.

[119] 马臻《2016年,由科学网博客带来的奇遇》科学新闻2017(2): 61.

[118] 马臻《至少得让大家知道星空在哪》文汇报2017-2-24(7).

[117] 马臻《一个普通青年教师“原生态的存在”》科技导报2017(1): 160.

[116] 马臻《实验室里的“自由意志”》大学生2017(1): 92-93.

2016年(15篇)

[115] 秦文至《综合评价录取背景下高中生要“补”什么》文汇报2016-12-16(7).

[114] 马臻《一个研究生导师的困惑》科技导报2016(23): 147.

[113] 马臻《青年教师招收研究生的经历》科技导报2016(22): 106.

[112] 马臻《破解研究生和导师“不咬弦”的“魔咒”》文汇报2016-11-25(7).

[111] 马臻《导师Style:强势的关心》大学生2016(20): 76-77.

[110] 马臻《我的硕导与博导,都是严师好导》大学生2016(18): 74-75.

[109] 马臻《大学“青椒”不只有诗和远方,更有眼前的压力》文汇报2016-9-23(6).

[108] 马臻《研究生和导师头上的“达摩克利斯之剑”》文汇报2016-9-9(7).

[107] 马臻《带研究生面临的问题和解决尝试》科技导报2016(16): 163.

[106] 马臻《实验室非菜场,拒绝讨价还价》大学生2016(15-16): 138-139.

[105] 马臻《“呛声”该怎么回应?》大学生2016(12): 70-71.

[104] 马臻《和新研究生的艰难磨合》大学生2016(10): 72-73.

[103] 马臻《指出研究生思考问题的误区、盲区,促其成长》科技导报2016(9): 125.

[102] 马臻《参加研究生毕业论文答辩评审》科技导报2016(6): 122.

[101] 马臻《青年教师撰写述职报告的门道》科技导报2016(4): 119.

2015年(7篇)

[100] 马臻《当研究生发表论文后——指导研究生手记》科技导报2015(24): 127.

[99] 马臻《随缘处境,以心转境——跨过求学和人生的“门槛”》海归学人2015(6): 46-47.

[98] 马臻《组织行为学对指导研究生的启发》科技导报2015(22): 127.

[97] 马臻《指导、管理研究生的实践和思考》科技导报2015(16): 111.

[96] 马臻,张士成,杨新《在通识教育背景下培养具有国际化视野的研究性人才》中国大学教学2015(6): 18-20.

[95] 马臻《三件囧事立规矩》大学生2015(12): 72-73.

[94] 马臻《轻轻地,我来了——回国任教的心路历程》海归学人2015(3): 44-45.

2014年(17篇)

[93] 马臻《直博四问》求学-考研2014(11): 11-13.

[92] 马臻《缓解工作和生活矛盾的一些实用方法》科技导报2014(31): 90.

[91] 马臻《一个大大咧咧的研究生》大学生2014(20): 70-71.

[90] 马臻《关于晋升职称的一些体会》科技导报2014(28-29): 30.

[89] 马臻《当导师不易,且行且珍惜》求学-考研2014(10): 12.

[88] 马臻《读研期间,请正儿八经做研究》求学-考研2014(8-9): 35-36.

[87] 马臻《与初入高校任教青年教师的问答》科技导报2014(26): 90.

[86] 马臻《对科研工作道路的一些思考》科技导报2014(24): 89.

[85] 马臻《从“家庭与机遇,该如何抉择”谈起》科技导报2014(24): 86.

[84] 马臻《一堂职场课》中国研究生2014(7): 56-57.

[83] 马臻《研究生步入职场前要补的一堂课》科技导报2014(18): 89.

[82] 马臻《参加校内各种会议的心得》科技导报2014(16): 89.

[81] 马臻《作讲座、讲课的四个“陷阱”及其规避》科技导报2014(12): 90.

[80] 马臻《开车与在职场工作的类比》科技导报2014(10): 90.

[79] 马臻《在办公室工作的点滴体会》科技导报2014(9): 90.

[78] 马臻《写给准备保研面试的学生》保研全攻略,北京大学出版社,2014: 21-23.

[77] 马臻《细节影响成败》科技导报2014(2): 85.

2013年(12篇)

[76] 马臻《入职后的一些点滴体会》科技导报2013(33): 85.

[75] 马臻《换位思考·落到实处》科技导报2013(26): 85.

[74] 马臻《机会在哪里》科技导报2013(24): 85.

[73] 马臻《做人与做事》复旦2013-6-20(12).

[72] 马臻《回国任教之生活篇》科技导报2013(17): 85.

[71] 马臻《在美国遇到的麻烦事儿》牛校究竟牛在哪儿?——我们的留学故事,西安交通大学出版社,2013: 233-236.

[70] 马臻《关于申请高校教职的问答》科技导报2013(13): 85.

[69] 马臻《关于时间管理的一些体会》科技导报2013(11): 85.

[68] 马臻《如何说服我们把offer给你——写给参加考研面试的“菜鸟”》求学-考研2013(3): 4.

[67] 马臻《入职后参加教学和学生工作》科技导报2013(7): 85.

[66] 马臻《别把文献当成“爹”》大学生2013(3-4): 128-129.

[65] 马臻《生命的路》复旦2013-2-27(12).

2012年(12篇)

[64] 马臻《给博士生的一堂职场课》科技导报2012(35): 84.

[63] 马臻《2012年寒假·青年基金》科技导报2012(34): 84.

[62] 马臻《海归科研起步记》中国科学报2012-12-10(6).

[61] 马臻《买房子和找工作的类比》科技导报2012(30): 84.

[60] 马臻《当理想和现实不一致的时候》科技导报2012(18): 84.

[59] 马臻《谈心》复旦2012-6-20(8).

[58] 马臻《入职后在时间管理方面的反思》科技导报2012(15): 84.

[57] 马臻《放低自己,感激所有》求学-考研2012(3): 4.

[56] 马臻《湖边偶得》复旦2012-4-12(8).

[55] 马臻《回国任教和申请科学基金的心路历程》科技导报2012(8): 4.

[54] 马臻《从博士毕业到找到教职的经历》科技导报2012(5): 84.

[53] 马臻《走向职场要把握好得和失的关系》科技导报2012(2): 84.

2011年(22篇)

[52] 马臻《卖车》复旦2011-12-29(8).

[51] 马臻《一段尘封的往事》新民晚报-大学版2011-12-12(5).

[50] 马臻《赏拉斯维加斯O秀》复旦2011-11-24(8).

[49] 马臻《一段尘封的高考往事》求学-理科版2011(11): 12-13.

[48] 马臻《做决定、做选择的哲理和心态》科技导报2011(30): 84.

[47] 马臻《科研入门浅谈》中国研究生2011(9): 40-41.

[46] 马臻《6法对抗压力》复旦2011-9-21(8).

[45] 马臻《关于在美国做博士后的一些信息》科技导报2011(26): 86.

[44]马臻《做什么要像什么》科技导报2011(22): 86.

[43] 马臻《如何向SCI收录的期刊投稿:发表科研论文应有“精品意识”》中国组织工程研究与临床康复2011(31): 5788.

[42] 马臻《发表科研论文应有“精品意识”》科学2011(4): 3-4.

[41] 马臻《找工作的哲理和心态》科技导报2011(20): 86.

[40] 马臻《关于出国做博士后和职业发展的问答》科技导报2011(19): 86.

[39] 马臻《做好学术报告的几个要点》科技导报2011(16): 86.

[38] 马臻《设计、打造自己的学术简历》科技导报2011(15): 86.

[37] 马臻《盘点的力量》新民晚报-大学版2011-5-3(5).

[36] 马臻《环境与心态》科学时报2011-4-25(A4).

[35] 马臻《写博客写成了栏目主持人》我看科协这五年——第三届科技馆杯“我与科协”征文获奖作品集,科学普及出版社,2011: 220-221.

[34] 马臻《我为〈科技导报〉写稿》科技导报2011(11): 82.

[33] 马臻《我为科技导报写稿》科学时报2011-4-11(B2).

[32] 马臻《一种融会贯通的感觉》科技导报2011(2): 82.

[31] 马臻《论文撤稿,谁之过?》科学新闻2011(1): 39-40.

2010年(19篇)

[30] 马臻,读者来信(“推荐盛弘强《高校‘海龟’需关注的8个细节问题》”)科技导报2010(24): 100.

[29] 马臻《我在美国的八年留学生活》求学-考研2010(6): 114-115.

[28] 马臻《在美国申请教职》科技导报2010(21): 129.

[27] 马臻《生命是一段旅程》求学-理科版2010(11): 1.

[26] 马臻《生命是一段旅程》求学-文科版2010(11): 1.

[25] 马臻《谈谈在美国读研的科研情况》求学-考研2010(5): 106-107.

[24] 马臻《出国推荐信的门道》科技导报2010(17): 129.

[23] 马臻《不写坏话也不一定好》大学生2010(15-16): 28-29.

[22] 马臻《我所经历的一种美国博士生培养方式》求学-考研2010(4): 112-113.

[21] 马臻《自我修炼,不必急功近利》科技导报2010(13): 127.

[20] 马臻《读科技导报“走向职场”栏目的好文章》科技导报2010(13): 124.

[19] 马臻《跨过求学和人生的“门槛”》求学-考研2010(3): 106-108.

[18] 马臻《在美国遇到的麻烦事儿》新东方英语2010(7-8): 136-137.

[17] 马臻《战胜“心魔”》科技导报2010(10): 127.

[16] 马臻《吹鼓手和幻觉加工厂》科学新闻2010(8): 4.

[15] 马臻《科研合作中的教训》科技导报2010(8): 121.

[14] 马臻《生命中的一页》中国研究生2010(4): 27-28.

[13] 马臻《生活如“交税”》科学新闻2010(4): 80.

[12] 马臻《出国留学问题答疑:一个“过来人”的视角》科技导报2010(4): 135.

2009年(9篇)

[11] 马臻《留学美国并非坦途》求学-考研2009(6): 108-109.

[10] 马臻《赴美国读研究生:一个全新的起点》求学-考研2009(5): 108.

[9] 马臻《在申请教职中“再造”自己》科技导报2009(19): 127.

[8] 马臻《在美国做博士后》科技导报2009(16): 127.

[7] 马臻,读者来信(“科研教训:应及时丢掉鸡肋”)科技导报2009(15): 124.

[6] 马臻《念好科研合作这本难念的经》科学新闻2009(13): 36.

[5] 马臻《慎重选择科研导师》科学新闻2009(12): 37.

[4] 马臻《论文写作“杀手锏”》科学新闻2009(6): 67.

[3] 马臻《文章背后的故事——终生难忘》流动的科学——科学网2008博文集粹,中国科学技术大学出版社,2009: 124-126.

2009年之前(2篇)

[2] 马臻,乐英红《高滋(1933-)》中国科学技术专家传略(化学卷4),中国科学技术出版社,2002: 461-468.

[1] 马臻《生活告诉我》复旦1997-12-16(4).


更多内容,请浏览个人主页:https://faculty.fudan.edu.cn/mazhen/zh_CN/index/180551/list/index.htm