朱秀萍

教授/博士生导师

Tel:

Email:xpzhu@fudan.edu.cn

研究方向:水处理及资能源回收利用

个人简历

教育简历

  • 2001年9月-2005年7月        北京航空航天大学环境工程系,本科

  • 2005年9月-2011年年7月      北京大学环境工程系,直博

工作简历

  • 2011年8月-2016年7月        美国Pennsylvania State University (PSU), 博士后

  • 2016年8月-2021年7月        美国Louisiana State University (LSU), 助理教授

  • 2021年9月-                   复旦大学,教授

硕士生导师/方向

朱秀萍教授本科毕业于北京航空航天大学,2011年7月在北京大学获得博士学位,师从于中国科学院院士倪晋仁教授,博士学位论文《掺硼金刚石膜电极电化学氧化难降解有机污染物机理及废水处理研究》被评为2013年全国优秀博士学位论文。2011年8月-2016年7月在宾夕法尼亚州立大学美国工程院院士Bruce Logan课题组从事博士后研究,2016年8月-2021年7月在路易斯安那州立大学担任助理教授,2021年9月通过海外高层次人才引进计划(青年项目)以教授身份加入复旦大学环境科学与工程系。主要从事电化学水处理及资能源回收利用方面的研究工作,目前已在Environmental Science & Technology, Water Research, Nature Sustainability 等国际知名期刊发表SCI 论文80余篇,引用3000余次, H指数 36 (基于Google Scholar).

学术兼职

  • National Science Open (NSO) 副主编,2021

  • Environmental Science & Ecotechnology (ESE) 青年编委,2021

  • Chemical Engineering Journal Advances 编委会委员,2020

  • Journal of Hazardous Materials Letters 咨询委员会委员,2020

  • Frontiers in Environmental Science 客座编辑,2021

  • Advances in Polymer Technology客座编辑,2020

荣誉与奖励

  • 2021年海外高层次人才引进计划(青年项目)

  • 2013年全国百篇优秀博士学位论文

  • 2010年教育部博士研究生学术新人奖

  • 2009年上海同济高廷耀环保科技发展基金会青年博士生杰出人才奖学金

  • 2005年北京市优秀毕业生

人才培养

本科生课程:

  • Water and Wastewater Treatment

  • Environmental Engineering III: Water Chemistry

  • Renewable Energy and Power Generation

研究生课程:

  • Advanced Topics in Water Quality and Treatment

科学研究

主持和参与的主要项目:

  • Development of novel-battery systems to harvest salinity gradient energy between seawater and river water (主持). Louisiana Board of Regents, Research Competitiveness Subprogram. June 1, 2017-June 30, 2020.

  • Microbial electrodialysis cells for wastewater treatment and water recycling in space (主持). NASA, LaSPACE Research Enhancement Award. July 1, 2017 – June 30, 2018.

  • Desalination of salt water for agriculture based on a novel battery system (主持). Louisiana Water Resources Research Institute. March 1, 2017- February 28, 2018.

  • Optimizing the microbial electrodialysis cell for wastewater treatment and water recycling in space. (主持). Louisiana NASA EPSCoR, Research Awards Program, Feb. 1, 2019 – Jan. 31, 2020.

  • A low cost and low energy consumption desalination battery for brackish and seawater treatment (主持). Louisiana Water Resources Research Institute. March 1, 2019 - February 29, 2020.

  • Solar-driven microbial electrodialysis cells for water recycling and H2 generation in space. (主持). NASA, LaSPACE Research Enhancement Award SCC Award. February 24, 2020 to May 31, 2020.

教研成果

代表性论文:

  1. Tan, G. C.; Xu, N.; Gao, D. X.; Zhu, X. P.* Facile designed manganese oxide/biochar for efficient salinity gradient energy recovery in concentration flow cells and influences of mono/multivalent ions. ACS Applied Materials & Interfaces, 2021, 13, 19855−19863.

  2. Lu, S. D.; Lan, J., Sun, W. L., He, X. J.; Zhu, X. P.* High energy recovery from salinity gradients in a concentration flow cell enhanced by bioelectrochemical currents. Chemical Engineering Journal, 2021, 426, 130826.

  3. Lu, S. D.; Lu, B. Y.; Tan, G. C.; Moe, W.; Xu, W. W.; Wang, Y.; Xing, D. F.; Zhu, X. P.* Mo2N nanobelt cathodes for efficient hydrogen production in microbial electrolysis cells with shaped biofilm microbiome. Biosensors and Bioelectronics, 2020, 167, 112491.

  4. Tan, G. C.; Lu, S. D.; Xu, N.; Gao, D. X.; Zhu, X. P.* Pseudocapacitive behaviors of polypyrrole grafted activated carbon and MnO2 electrodes to enable fast and efficient membrane-free capacitive deionization. Environmental Science & Technology 2020, 54, 9, 5843–5852.

  5. Palakkal, V. M.; Nguyen, T.; Nguyen, R.; Chernova, M.; Rubio, J.; Venugopalan, G.; Hatzell, M.; Zhu, X. P.*; Arges, G. C.*. High power thermally regenerative ammonia-copper redox flow battery enabled by a zero gap cell design, low-resistant membranes, and electrode coatings. ACS Applied Energy Materials 2020, 3, 5, 4787–4798

  6. Zhu, H. H.; Lai, J. W.; Arges, G. C.; Wang, Y.; Zhu, X. P.* Engineering the interlayer spacing of molybdenum disulfide for efficient salinity gradient energy recovery in concentration flow cells. Electrochimica Acta, 2020, 342, 136103.

  7. Tan, G. C.; Zhu, X. P.* Polyelectrolyte-coated copper hexacyanoferrate and bismuth oxychloride electrodes for efficient salinity gradient energy recovery in capacitive mixing. Energy Technology, 2020, 1900863.

  8. Tan, G. C.; Lu, S. D.; Fan, J. Z.; Li, G. Q.; Zhu, X. P.* Chloride-ion concentration flow cells for efficient salinity gradient energy recovery with bismuth oxychloride electrodes. Electrochimica Acta, 2019, 322, 134724.

  9. Whiddon, E.; Zhu, H. H.; Zhu, X. P.* Sodium-ion concentration flow cell stacks for salinity gradient energy recovery: Power generation of series and parallel configurations. Journal of Power Sources, 2019, 435, 226796.

  10. Lu, S. D.; Li, H. N.; Tan, G. C.; Wen, F.; Flynn, M. T.; Zhu, X. P.* Resource recovery microbial fuel cells for urine-containing wastewater treatment without external energy consumption. Chemical Engineering Journal, 2019, 373, 1072-1080.

  11. Zhu, H. H.; Xu, W. W.; Tan, G. C.; Whiddon, E.; Wang, Y.; Arges, C. G.; Zhu, X. P.* Carbonized peat moss electrodes for efficient salinity gradient energy recovery in a capacitive concentration flow cell. Electrochimica Acta, 2019, 294, 240-248.

  12. Wang, W. G.; Tian, H.; Shu, G. Q.*, Huo, D. X.; Zhang, F.; Zhu, X. P.* A bimetallic thermally-regenerative ammonia-based battery for high power density and efficiently harvesting low-grade thermal energy. Journal of Materials Chemistry A, 2019, 7, 5991-6000.

  13. Tan, G. C.; Li, H. N.; Zhu, H. H.; Lu, S. D.; Fan, J. Z.; Li, G.Q.; Zhu, X. P.* Concentration flow cells based on chloride-ion extraction and insertion with metal chloride electrodes for efficient salinity gradient energy harvest. ACS Sustainable Chemistry & Engineering, 2018, 6, 15212-15218.

  14. Lu, L.; Guest, J. S.; Peters, C. A; Zhu, X. P.; Rau G. H., Ren, Z. Y. Wastewater treatment for carbon capture and utilization. Nature Sustainability, 2018, 1, 750-758.

  15. Zhu, X. P.*; Xu, W.W.; Tan, G.C.; Wang, Y. Concentration Flow Cells for Efficient Salinity Gradient Energy Recovery with Nanostructured Open Frameowork Hexacyanoferrate Electrodes. ChemistrySelect, 2018, 3, 5571-5580.

  16. Wang W. G.; Shu G. Q.*; Tian H.*; Zhu X. P.*; A numerical model for a thermally-regenerative ammonia-based flow battery using for low grade waste heat recovery. Journal of Power Sources. 2018, 388: 32-44.

  17. Rahimi, M.; Straub, A. P.; Zhang, F., Zhu, X.P.; Elimelech, M.; Gorski, C. A.; Logan, B. E. Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity. Energy & Environmental Science. 2018, 11: 276-285

  18. Zhu, X. P.*; Kim, T.; Rahimi, M.; Gorski, C.A.; Logan, B. E. Integrating Reverse-electrodialysis stacks with flow batteries for improved energy recovery from salinity gradient and energy storage. ChemSusChem. 2017, 10: 1-8

  19. Zhu, X. P.; Rahimi, M.; Gorski, C.; Logan, B. E. A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat. ChemSusChem, 2016, 9: 873–879

  20. Zhu, X. P.; He, W. H.; Logan, B. E. Influence of solution concentration and composition on the performance of reverse electrodialysis cells. Journal of Membrane Science 2015, 494, 154-160.

  21. Zhu, X. P.; He, W. H.; Logan, B. E. Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells. Journal of Membrane Science 2015, 486:215-221.

  22. Zhu, X. P.; Siegert, M.; Yates, M. D.; Logan, B. E. Alamethicin suppresses methanogenesis and promotes acetogenesis in bioelectrochemical systems. Applied and Environmental Microbiology 2015, 81: 3863-3868.

  23. Zhu, X. P.; Yang, W. L., Hatzell, M. C.; Logan, B. E. Energy recovery from solutions with different salinities based on swelling and contraction of hydrogels. Environmental Science & Technology 2014, 48:7157-7163.

  24. Zhu, X. P.; Yates, M. D.; Hatzell, M. C.; Rao, H. A.; Saikaly, P. E.; Logan, B. E. Microbial community composition is unaffected by anode potential. Environmental Science & Technology 2014, 48: 1352-1358.

  25. Zhu, X. P.; Yates, M. D.; Hatzell, M. C.; Rao, H. A.; Saikaly, P. E.; Logan, B. E. Reply to “Strain level variation in biofilms selected at different anode potentials: a response to Zhu et al.”. Environmental Science & Technology 2014, 48: 14853-14854.

  26. Zhu, X. P.; Hatzell, M. C.; Logan, B. E. Microbial reverse-electrodialysis electrolysis and chemical-production cell for H2 production and CO2 sequestration. Environmental Science & Technology Letters 2014, 1:231-235.

  27. Zhu, X. P.; Logan, B. E. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration. Bioresource Technology 2014, 159:24-29.

  28. Zhu, X. P.; Logan, B. E. Copper anode corrosion affects power generation in microbial fuel cells. Journal of Chemical Technology and Biotechnology 2014, 89: 471-474.

  29. Zhu, X. P.; Hatzell, M. C.; Cusick, R. D.; Logan, B. E. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production. Electrochemistry Communications 2013, 31, 52-55.

  30. Zhu, X. P.; Logan, B. E. Using single-chamber microbial fuel cells as renewable power sources for electro-Fenton treatment of organic pollutants. Journal of Hazardous Materials 2013, 252-253, 198-203.

  31. Zhu, X. P.; Tokash, J. C.; Hong, Y. Y; Logan, B.E. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials. Bioelectrochemistry 2013, 90, 30-35.

  32. Zhu, X. P.; Yates, M. D.; Logan, B. E. Set potential regulation reveals additional oxidation enzyme peaks of Geobacter sulfurreducens anodic biofilms. Electrochemistry Communications 2012, 22, 116-119.

  33. Zhu, X. P.; Ni, J. R.; Wei, J. J.; Xing, X.; Li, H. N.; Jiang, Y. Scale-up of B-doped diamond anode system for electrochemical oxidation of phenol simulated wastewater in batch mode. Electrochimica Acta 2011, 56, 9437-9447.

  34. Zhu, X. P.; Ni, J. R. The improvement of boron-doped diamond anode system in electrochemical degradation of p-nitrophenol by zero-valent iron. Electrochimica Acta 2011, 56, 10371-10377.

  35. Zhu, X. P.; Ni, J. R.; Xing, X.; Li, H. N.; Jiang, Y. Synergies between electrochemical oxidation and activated carbon adsorption in three-dimensional boron-doped diamond anode system. Electrochimica Acta 2011, 56, 1270-1274.

  36. Zhu, X. P.; Ni, J. R.; Wei, J. J.; Xing, X.; Li, H. N.; Jiang, Y. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode. Journal of Hazardous Materials 2011, 189, 127-133.

  37. Zhu, X. P.; Ni, J. R.; Li, H. N.; Jiang, Y.; Xing, X.; Borthwick, A. Effects of ultrasound on electrochemical oxidation mechanisms of p-substituted phenols at BDD and PbO2 anodes. Electrochimica Acta 2010, 55, 5569-5575.

  38. Zhu, X. P.; Ni, J. R.; Wei, J. J.; Xing, X.; Li, H. N.; Jiang, Y. Scale-up of BDD anode system for electrochemical oxidation of phenol simulated wastewater in continuous mode. Journal of Hazardous Materials 2010, 184, 493-498.

  39. Zhu, X. P.; Ni, J. R. Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochemistry Communications 2009, 11, 274-277.

  40. Zhu, X. P.; Ni, J. R.; Lai P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes. Water Research 2009, 43, 4347-4355.

  41. Zhu, X. P.; Tong, M. P.; Shi, S. Y.; Zhao, H. Z.; Ni, J. R. Essential explanation of the strong mineralization performance of boron-doped diamond electrodes. Environmental Science & Technology 2008, 42, 4914- 4920.

  42. Zhu, X. P.; Shi, S. Y.; Wei, J. J.; Lv, F. X.; Zhao, H. Z.; Kong, J. T.; He, Q.; Ni, J. R. Electrochemical oxidation characteristics of p-substituted phenols using a boron-doped diamond electrode. Environmental Science & Technology 2007, 41, 6541-6546.