朱秀萍

教授/博士生导师

研究方向:绿色低碳水处理技术

Tel:

Email:xpzhu@fudan.edu.cn

个人简历

教育简历


  • 2005年9月-2011年年7月      北京大学环境工程系,直博

  • 2001年9月-2005年7月         北京航空航天大学环境工程系,本科

工作简历

  • 2021.09-至今       复旦大学, 环境科学与工程系,教授

  • 2016.08-2021.07     美国路易斯安娜州立大学, 土木与环境工程系,助理教授

  • 2011.08-2016.07     美国宾夕法尼亚州立大学,土木与环境工程系,博士后(导师:Bruce Logan院士)


博士生导师/方向

本课题组专注于绿色低碳水处理技术研究,旨在提升水资源利用效率、减少碳排放,推动环境与能源的协同发展。当前主要研究方向包括:

(1)微生物电化学污水制氢:利用微生物电化学系统实现污水中有机物的降解与氢气回收,重点研究电极材料优化、微生物群落构建及电子传递机制,提升氢气产率和能量转化效率,为实现“污水资源化+能源回收”的双重目标提供技术支撑。

(2)污水处理过程中的CO₂转化:面向污水处理中的碳排放问题,开展CO₂电催化转化研究,开发高效电极材料,实现CO₂向乙烯等高附加值产物的高效转化,探索其与污水处理工艺的耦合机制,推动污水处理过程向碳中和转型。

(3)水凝胶在海水淡化与脱盐中的应用:基于水凝胶的高吸水性与可调控网络结构,开发多功能水凝胶材料用于低能耗、高效率的脱盐过程,提升脱水与截盐性能,为偏远和资源匮乏地区提供可持续的清洁水解决方案。

学术兼职

  • National Science Open,Associate Editor

  • Chemical Engineering Journal Advances,Associate Editor

  • Clean Energy and Sustainability,编委

  • Environmental Science & Ecotechnology,青年编委

  • 中国环境科学学会水处理与回用专业委员会委员

  • 中国环境科学学会青年科学家分会委员

荣誉与奖励

  • 2022年,中国环境科学学会青年科学家金奖

  • 2021年,国家海外高层次人才引进计划青年项目入选者

  • 2013年,全国百篇优秀博士学位论文

  • 2010年,教育部博士研究生学术新人奖

  • 2009年,上海同济高廷耀环保科技发展基金会青年博士生杰出人才奖学金

  • 2005年,北京市优秀毕业生

人才培养

本科生课程:

  • 环境工程原理

  • 可再生能源-原理与社会应用(全英文课程)

  • Water and Wastewater Treatment

  • Environmental Engineering III: Water Chemistry

  • Renewable Energy and Power Generation

研究生课程:

  • 工程伦理与环境

  • Advanced Topics in Water Quality and Treatment

科学研究

主持和参与的主要项目:

  • 2023-2026:国家自然基金委面上基金

  • 2021-2023:国家海外高层次人才引进计划青年项目

  • 2016-2021:主持美国NASA、地质调查局、路易斯安那州政府等资助的项目6项

教研成果

代表性论文:

  1. Sun, Y.; Fei, J.; Yan, S.; Wang, X.; An, D.; Zhu, X. P.* Water recovery from wastewater by hydrogels. Environmental Science & Technology Letters 2024, 11 (4), 357-363.

  2. Dong, X.; Pang, D.; Luo, G.; Zhu, X. P.* Microbial water electrolysis cells for efficient wastewater treatment and H2 production. ACS Sustainable Chemistry & Engineering 2024, 12 (10), 4203-4212.

  3. Sun, W. L.; Fei, J. Y.; Snow, S. D.; Zhu, X. P.* Dewatering poly (acrylic acid-co-acrylamide) hydrogels by ammonium bicarbonate for desalination. Desalination, 2024, 574, 117267.

  4. Lan, J.; Wen, F.; Ren, Y. X.; Liu, G. L.; Jiang, Y.; Wang, Z. M.; Zhu, X. P.* An overview of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. Environmental Science and Ecotechnology, 2023, 16, 100278.

  5. Tan, G. C.; Xu, N.; Gao, D. X.; Zhu, X. P.* Superabsorbent graphene oxide/carbon nanotube hybrid Poly (acrylic acid-co-acrylamide) hydrogels for efficient salinity gradient energy harvest. Energy, 2022, 258, 124843.

  6. Lu, S. D.; Sun, W. L.; Zhu, X. P.* Synergistic effects between dual-photoelectrodes and bioanode enhance sustainable hydrogen and electricity production from wastewater. Resources, Conservation and Recycling, 2022, 183, 106367.

  7. Tan, G. C.; Xu, N.; Gao, D. X.; Zhu, X. P.* Facile designed manganese oxide/biochar for efficient salinity gradient energy recovery in concentration flow cells and influences of mono/multivalent ions. ACS Applied Materials & Interfaces, 2021, 13, 19855−19863.

  8. Lu, S. D.; Lan, J., Sun, W. L., He, X. J.; Zhu, X. P.* High energy recovery from salinity gradients in a concentration flow cell enhanced by bioelectrochemical currents. Chemical Engineering Journal, 2021, 426, 130826.

  9. Lu, S. D.; Lu, B. Y.; Tan, G. C.; Moe, W.; Xu, W. W.; Wang, Y.; Xing, D. F.; Zhu, X. P.* Mo2N nanobelt cathodes for efficient hydrogen production in microbial electrolysis cells with shaped biofilm microbiome. Biosensors and Bioelectronics, 2020, 167, 112491.

  10. Tan, G. C.; Lu, S. D.; Xu, N.; Gao, D. X.; Zhu, X. P.* Pseudocapacitive behaviors of polypyrrole grafted activated carbon and MnO2 electrodes to enable fast and efficient membrane-free capacitive deionization. Environmental Science & Technology 2020, 54, 9, 5843–5852.

  11. Palakkal, V. M.; Nguyen, T.; Nguyen, R.; Chernova, M.; Rubio, J.; Venugopalan, G.; Hatzell, M.; Zhu, X. P.*; Arges, G. C.*. High power thermally regenerative ammonia-copper redox flow battery enabled by a zero gap cell design, low-resistant membranes, and electrode coatings. ACS Applied Energy Materials 2020, 3, 5, 4787–4798

  12. Zhu, H. H.; Lai, J. W.; Arges, G. C.; Wang, Y.; Zhu, X. P.* Engineering the interlayer spacing of molybdenum disulfide for efficient salinity gradient energy recovery in concentration flow cells. Electrochimica Acta, 2020, 342, 136103.

  13. Tan, G. C.; Zhu, X. P.* Polyelectrolyte-coated copper hexacyanoferrate and bismuth oxychloride electrodes for efficient salinity gradient energy recovery in capacitive mixing. Energy Technology, 2020, 1900863.

  14. Tan, G. C.; Lu, S. D.; Fan, J. Z.; Li, G. Q.; Zhu, X. P.* Chloride-ion concentration flow cells for efficient salinity gradient energy recovery with bismuth oxychloride electrodes. Electrochimica Acta, 2019, 322, 134724.

  15. Whiddon, E.; Zhu, H. H.; Zhu, X. P.* Sodium-ion concentration flow cell stacks for salinity gradient energy recovery: Power generation of series and parallel configurations. Journal of Power Sources, 2019, 435, 226796.

  16. Lu, S. D.; Li, H. N.; Tan, G. C.; Wen, F.; Flynn, M. T.; Zhu, X. P.* Resource recovery microbial fuel cells for urine-containing wastewater treatment without external energy consumption. Chemical Engineering Journal, 2019, 373, 1072-1080.

  17. Zhu, H. H.; Xu, W. W.; Tan, G. C.; Whiddon, E.; Wang, Y.; Arges, C. G.; Zhu, X. P.* Carbonized peat moss electrodes for efficient salinity gradient energy recovery in a capacitive concentration flow cell. Electrochimica Acta, 2019, 294, 240-248.

  18. Wang, W. G.; Tian, H.; Shu, G. Q.*, Huo, D. X.; Zhang, F.; Zhu, X. P.* A bimetallic thermally-regenerative ammonia-based battery for high power density and efficiently harvesting low-grade thermal energy. Journal of Materials Chemistry A, 2019, 7, 5991-6000.

  19. Tan, G. C.; Li, H. N.; Zhu, H. H.; Lu, S. D.; Fan, J. Z.; Li, G.Q.; Zhu, X. P.* Concentration flow cells based on chloride-ion extraction and insertion with metal chloride electrodes for efficient salinity gradient energy harvest. ACS Sustainable Chemistry & Engineering, 2018, 6, 15212-15218.

  20. Lu, L.; Guest, J. S.; Peters, C. A; Zhu, X. P.; Rau G. H., Ren, Z. Y. Wastewater treatment for carbon capture and utilization. Nature Sustainability, 2018, 1, 750-758. 

  21. Zhu, X. P.*; Xu, W.W.; Tan, G.C.; Wang, Y. Concentration Flow Cells for Efficient Salinity Gradient Energy Recovery with Nanostructured Open Frameowork Hexacyanoferrate Electrodes. ChemistrySelect, 2018, 3, 5571-5580.

  22. Wang W. G.; Shu G. Q.*; Tian H.*; Zhu X. P.*; A numerical model for a thermally-regenerative ammonia-based flow battery using for low grade waste heat recovery. Journal of Power Sources. 2018, 388: 32-44.

  23. Rahimi, M.; Straub, A. P.; Zhang, F., Zhu, X.P.; Elimelech, M.; Gorski, C. A.; Logan, B. E. Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity. Energy & Environmental Science. 2018, 11: 276-285

  24. Zhu, X. P.*; Kim, T.; Rahimi, M.; Gorski, C.A.; Logan, B. E. Integrating Reverse-electrodialysis stacks with flow batteries for improved energy recovery from salinity gradient and energy storage. ChemSusChem. 2017, 10: 1-8

  25. Zhu, X. P.; Rahimi, M.; Gorski, C.; Logan, B. E. A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat. ChemSusChem, 2016, 9: 873–879

  26. Zhu, X. P.; He, W. H.; Logan, B. E. Influence of solution concentration and composition on the performance of reverse electrodialysis cells. Journal of Membrane Science 2015, 494, 154-160.

  27. Zhu, X. P.; He, W. H.; Logan, B. E. Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells. Journal of Membrane Science 2015, 486:215-221. 

  28. Zhu, X. P.; Siegert, M.; Yates, M. D.; Logan, B. E. Alamethicin suppresses methanogenesis and promotes acetogenesis in bioelectrochemical systems. Applied and Environmental Microbiology 2015, 81: 3863-3868. 

  29. Zhu, X. P.; Yang, W. L., Hatzell, M. C.; Logan, B. E. Energy recovery from solutions with different salinities based on swelling and contraction of hydrogels. Environmental Science & Technology 2014, 48:7157-7163.

  30. Zhu, X. P.; Yates, M. D.; Hatzell, M. C.; Rao, H. A.; Saikaly, P. E.; Logan, B. E. Microbial community composition is unaffected by anode potential. Environmental Science & Technology 2014, 48: 1352-1358.

  31. Zhu, X. P.; Yates, M. D.; Hatzell, M. C.; Rao, H. A.; Saikaly, P. E.; Logan, B. E. Reply to “Strain level variation in biofilms selected at different anode potentials: a response to Zhu et al.”. Environmental Science & Technology 2014, 48: 14853-14854.

  32. Zhu, X. P.; Hatzell, M. C.; Logan, B. E. Microbial reverse-electrodialysis electrolysis and chemical-production cell for H2 production and CO2 sequestration. Environmental Science & Technology Letters 2014, 1:231-235.

  33. Zhu, X. P.; Logan, B. E. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration. Bioresource Technology 2014, 159:24-29.

  34. Zhu, X. P.; Logan, B. E. Copper anode corrosion affects power generation in microbial fuel cells. Journal of Chemical Technology and Biotechnology 2014, 89: 471-474.

  35. Zhu, X. P.; Hatzell, M. C.; Cusick, R. D.; Logan, B. E. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production. Electrochemistry Communications 2013, 31, 52-55.

  36. Zhu, X. P.; Logan, B. E. Using single-chamber microbial fuel cells as renewable power sources for electro-Fenton treatment of organic pollutants. Journal of Hazardous Materials 2013, 252-253, 198-203.

  37. Zhu, X. P.; Tokash, J. C.; Hong, Y. Y; Logan, B.E. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials. Bioelectrochemistry 2013, 90, 30-35.

  38. Zhu, X. P.; Yates, M. D.; Logan, B. E. Set potential regulation reveals additional oxidation enzyme peaks of Geobacter sulfurreducens anodic biofilms. Electrochemistry Communications 2012, 22, 116-119.

  39. Zhu, X. P.; Ni, J. R.; Wei, J. J.; Xing, X.; Li, H. N.; Jiang, Y. Scale-up of B-doped diamond anode system for electrochemical oxidation of phenol simulated wastewater in batch mode. Electrochimica Acta 2011, 56, 9437-9447.

  40. Zhu, X. P.; Ni, J. R. The improvement of boron-doped diamond anode system in electrochemical degradation of p-nitrophenol by zero-valent iron. Electrochimica Acta 2011, 56, 10371-10377.

  41. Zhu, X. P.; Ni, J. R.; Xing, X.; Li, H. N.; Jiang, Y. Synergies between electrochemical oxidation and activated carbon adsorption in three-dimensional boron-doped diamond anode system. Electrochimica Acta 2011, 56, 1270-1274.

  42. Zhu, X. P.; Ni, J. R.; Wei, J. J.; Xing, X.; Li, H. N.; Jiang, Y. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode. Journal of Hazardous Materials 2011, 189, 127-133.

  43. Zhu, X. P.; Ni, J. R.; Li, H. N.; Jiang, Y.; Xing, X.; Borthwick, A. Effects of ultrasound on electrochemical oxidation mechanisms of p-substituted phenols at BDD and PbO2 anodes. Electrochimica Acta 2010, 55, 5569-5575.

  44. Zhu, X. P.; Ni, J. R.; Wei, J. J.; Xing, X.; Li, H. N.; Jiang, Y. Scale-up of BDD anode system for electrochemical oxidation of phenol simulated wastewater in continuous mode. Journal of Hazardous Materials 2010, 184, 493-498.

  45. Zhu, X. P.; Ni, J. R. Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochemistry Communications 2009, 11, 274-277.

  46. Zhu, X. P.; Ni, J. R.; Lai P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes. Water Research 2009, 43, 4347-4355.

  47. Zhu, X. P.; Tong, M. P.; Shi, S. Y.; Zhao, H. Z.; Ni, J. R. Essential explanation of the strong mineralization performance of boron-doped diamond electrodes. Environmental Science & Technology 2008, 42, 4914- 4920.

  48. Zhu, X. P.; Shi, S. Y.; Wei, J. J.; Lv, F. X.; Zhao, H. Z.; Kong, J. T.; He, Q.; Ni, J. R. Electrochemical oxidation characteristics of p-substituted phenols using a boron-doped diamond electrode. Environmental Science & Technology 2007, 41, 6541-6546. 


专著:

  1. Lu, S. D.; Tan, G. C.; Zhu, X. P. * [Invited Chapter] H2 evolution catalysts for microbial electrolysis cells. In Novel Catalyst Materials for Bioelectrochemical Systems: Fundamentals and Applications, American Chemical Society: 2020; Vol. 1342, pp 27-43.

  2. Tan, G. C.; Lu, S. D.; Zhu, X. P. * [Invited Chapter] Swelling/shrinking hydrogels engines: Fundamentals and perspectives. in Salinity Gradient Heat Engines, Elsevier: 2021, pp302.

  3. Tian, H.; Wang, W. G.; Zhu, X. P., Shu, G. Q. [Invited Chapter] Bimetallic thermally-regenerative ammonia batteries. In Low-Grade Thermal Energy Harvesting, Woodhead Publishing, 2022, pp 163-192.


专利:

  1. 一种聚(丙烯酸-co-丙烯酰胺)水凝胶及其制备方法与在生活污水回用中的应用, 2024-6-11, 中国, 2024107423142

  2. 一种氨气驱动的水凝胶脱水-脱盐方法, 2024-01-23, 中国, 202410094370X

  3. 一种利用污水高效制氢的微生物水电解槽, 2024-1-23, 中国, 202410094369.7

  4. 一种复合水凝胶及其制备方法与在海水脱盐中的应用, 2023-12-23, 中国, 2023117842970

  5. 一种用于深度处理制药废水的方法, 2012-1-25, 中国, ZL 2010 10222306.3

  6. 一种黄姜废水的深度处理方法, 2011-12-7, 中国, ZL 2010 10222283.6