Xiuping ZHU

Professor

Environmental Engineering

Email:xpzhu@fudan.edu.cn

Address: Songhu Road 2005, Yangpu District, Shanghai

Research Interests

  • Water and wastewater treatment, Desalination, Bioelectrochemical system, Electrocatalysis, Hydrogen production, Renewable energy

Biography

  • 2021-present   Professor at Fudan University   

  • 2016-2021    Assistant Professor at Louisiana State University   

  • 2011-2016    Postdoctoral Researcher at Penn State University   

  • 2005-2011   Ph.D. student at Peking University   

  • 2001-2005   B.S. student at Beihang University

Prizes and Awards

  • 2022: Gold Award for Young Scientists, Chinese Society for Environmental Sciences     

  • 2013: National Top 100 Excellent Doctoral Dissertations, Ministry of Education, China     

  • 2010: Outstanding Ph.D. Candidate Award, Ministry of Education, China     

  • 2009: National Outstanding Young Ph.D. Candidate Scholarship,  Gaotingyao Foundation for Environmental Science and Technology Development, China

Key Publications

  1. Huang, L. Y.; Zhang, M.; Zhu, X. P.* 3D-printed copper-based gas diffusion electrodes with a tunable bilayer architecture for controlled co2 electroreduction selectivity. Small Methods 2025, 2500648.  

  2. Fei, J. Y.; Sun, W. L. *; Li, H. N.; She, Q. H.; Yang, X. J.; Huang, T. B.; Fang, M. L.; Wang, Z. M.; Snow, S. D.; Zhu, X. P.* Unlocking hydrogel-based desalination with ammonia gas dewatering. Environmental Science & Technology 2025,59,11907−11918.                      

  3. Sun, Y.; Fei, J.; Yan, S.; Wang, X.; An, D.; Zhu, X. P.* Water recovery from wastewater by hydrogels. Environmental Science & Technology Letters 2024, 11 (4), 357-363.

  4. Dong, X.; Pang, D.; Luo, G.; Zhu, X. P.* Microbial water electrolysis cells for efficient wastewater treatment and H2 production. ACS Sustainable Chemistry & Engineering 2024, 12 (10), 4203-4212.

  5. Sun, W. L.; Fei, J. Y.; Snow, S. D.; Zhu, X. P.* Dewatering poly (acrylic acid-co-acrylamide) hydrogels by ammonium bicarbonate for desalination. Desalination, 2024, 574, 117267.

  6. Lan, J.; Wen, F.; Ren, Y. X.; Liu, G. L.; Jiang, Y.; Wang, Z. M.; Zhu, X. P.* An overview of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. Environmental Science and Ecotechnology, 2023, 16, 100278.

  7. Tan, G. C.; Xu, N.; Gao, D. X.; Zhu, X. P.* Superabsorbent graphene oxide/carbon nanotube hybrid Poly (acrylic acid-co-acrylamide) hydrogels for efficient salinity gradient energy harvest. Energy, 2022, 258, 124843.

  8. Lu, S. D.; Sun, W. L.; Zhu, X. P.* Synergistic effects between dual-photoelectrodes and bioanode enhance sustainable hydrogen and electricity production from wastewater. Resources, Conservation and Recycling, 2022, 183, 106367.

  9. Tan, G. C.; Xu, N.; Gao, D. X.; Zhu, X. P.* Facile designed manganese oxide/biochar for efficient salinity gradient energy recovery in concentration flow cells and influences of mono/multivalent ions. ACS Applied Materials & Interfaces, 2021, 13, 19855−19863.

  10. Lu, S. D.; Lan, J., Sun, W. L., He, X. J.; Zhu, X. P.* High energy recovery from salinity gradients in a concentration flow cell enhanced by bioelectrochemical currents. Chemical Engineering Journal, 2021, 426, 130826.

  11. Lu, S. D.; Lu, B. Y.; Tan, G. C.; Moe, W.; Xu, W. W.; Wang, Y.; Xing, D. F.; Zhu, X. P.* Mo2N nanobelt cathodes for efficient hydrogen production in microbial electrolysis cells with shaped biofilm microbiome. Biosensors and Bioelectronics, 2020, 167, 112491.

  12. Tan, G. C.; Lu, S. D.; Xu, N.; Gao, D. X.; Zhu, X. P.* Pseudocapacitive behaviors of polypyrrole grafted activated carbon and MnO2 electrodes to enable fast and efficient membrane-free capacitive deionization. Environmental Science & Technology 2020, 54, 9, 5843–5852.

  13. Palakkal, V. M.; Nguyen, T.; Nguyen, R.; Chernova, M.; Rubio, J.; Venugopalan, G.; Hatzell, M.; Zhu, X. P.*; Arges, G. C.*. High power thermally regenerative ammonia-copper redox flow battery enabled by a zero gap cell design, low-resistant membranes, and electrode coatings. ACS Applied Energy Materials 2020, 3, 5, 4787–4798

  14. Zhu, H. H.; Lai, J. W.; Arges, G. C.; Wang, Y.; Zhu, X. P.* Engineering the interlayer spacing of molybdenum disulfide for efficient salinity gradient energy recovery in concentration flow cells. Electrochimica Acta, 2020, 342, 136103.

  15. Tan, G. C.; Zhu, X. P.* Polyelectrolyte-coated copper hexacyanoferrate and bismuth oxychloride electrodes for efficient salinity gradient energy recovery in capacitive mixing. Energy Technology, 2020, 1900863.

  16. Tan, G. C.; Lu, S. D.; Fan, J. Z.; Li, G. Q.; Zhu, X. P.* Chloride-ion concentration flow cells for efficient salinity gradient energy recovery with bismuth oxychloride electrodes. Electrochimica Acta, 2019, 322, 134724.

  17. Whiddon, E.; Zhu, H. H.; Zhu, X. P.* Sodium-ion concentration flow cell stacks for salinity gradient energy recovery: Power generation of series and parallel configurations. Journal of Power Sources, 2019, 435, 226796.

  18. Lu, S. D.; Li, H. N.; Tan, G. C.; Wen, F.; Flynn, M. T.; Zhu, X. P.* Resource recovery microbial fuel cells for urine-containing wastewater treatment without external energy consumption. Chemical Engineering Journal, 2019, 373, 1072-1080.

  19. Zhu, H. H.; Xu, W. W.; Tan, G. C.; Whiddon, E.; Wang, Y.; Arges, C. G.; Zhu, X. P.* Carbonized peat moss electrodes for efficient salinity gradient energy recovery in a capacitive concentration flow cell. Electrochimica Acta, 2019, 294, 240-248.

  20. Wang, W. G.; Tian, H.; Shu, G. Q.*, Huo, D. X.; Zhang, F.; Zhu, X. P.* A bimetallic thermally-regenerative ammonia-based battery for high power density and efficiently harvesting low-grade thermal energy. Journal of Materials Chemistry A, 2019, 7, 5991-6000.

  21. Tan, G. C.; Li, H. N.; Zhu, H. H.; Lu, S. D.; Fan, J. Z.; Li, G.Q.; Zhu, X. P.* Concentration flow cells based on chloride-ion extraction and insertion with metal chloride electrodes for efficient salinity gradient energy harvest. ACS Sustainable Chemistry & Engineering, 2018, 6, 15212-15218.

  22. Lu, L.; Guest, J. S.; Peters, C. A; Zhu, X. P.; Rau G. H., Ren, Z. Y. Wastewater treatment for carbon capture and utilization. Nature Sustainability, 2018, 1, 750-758. 

  23. Zhu, X. P.*; Xu, W.W.; Tan, G.C.; Wang, Y. Concentration Flow Cells for Efficient Salinity Gradient Energy Recovery with Nanostructured Open Frameowork Hexacyanoferrate Electrodes. ChemistrySelect, 2018, 3, 5571-5580.

  24. Wang W. G.; Shu G. Q.*; Tian H.*; Zhu X. P.*; A numerical model for a thermally-regenerative ammonia-based flow battery using for low grade waste heat recovery. Journal of Power Sources. 2018, 388: 32-44.

  25. Rahimi, M.; Straub, A. P.; Zhang, F., Zhu, X.P.; Elimelech, M.; Gorski, C. A.; Logan, B. E. Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity. Energy & Environmental Science. 2018, 11: 276-285

  26. Zhu, X. P.*; Kim, T.; Rahimi, M.; Gorski, C.A.; Logan, B. E. Integrating Reverse-electrodialysis stacks with flow batteries for improved energy recovery from salinity gradient and energy storage. ChemSusChem. 2017, 10: 1-8

  27. Zhu, X. P.; Rahimi, M.; Gorski, C.; Logan, B. E. A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat. ChemSusChem, 2016, 9: 873–879

  28. Zhu, X. P.; He, W. H.; Logan, B. E. Influence of solution concentration and composition on the performance of reverse electrodialysis cells. Journal of Membrane Science 2015, 494, 154-160.

  29. Zhu, X. P.; He, W. H.; Logan, B. E. Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells. Journal of Membrane Science 2015, 486:215-221. 

  30. Zhu, X. P.; Siegert, M.; Yates, M. D.; Logan, B. E. Alamethicin suppresses methanogenesis and promotes acetogenesis in bioelectrochemical systems. Applied and Environmental Microbiology 2015, 81: 3863-3868. 

  31. Zhu, X. P.; Yang, W. L., Hatzell, M. C.; Logan, B. E. Energy recovery from solutions with different salinities based on swelling and contraction of hydrogels. Environmental Science & Technology 2014, 48:7157-7163.

  32. Zhu, X. P.; Yates, M. D.; Hatzell, M. C.; Rao, H. A.; Saikaly, P. E.; Logan, B. E. Microbial community composition is unaffected by anode potential. Environmental Science & Technology 2014, 48: 1352-1358.

  33. Zhu, X. P.; Yates, M. D.; Hatzell, M. C.; Rao, H. A.; Saikaly, P. E.; Logan, B. E. Reply to “Strain level variation in biofilms selected at different anode potentials: a response to Zhu et al.”. Environmental Science & Technology 2014, 48: 14853-14854.

  34. Zhu, X. P.; Hatzell, M. C.; Logan, B. E. Microbial reverse-electrodialysis electrolysis and chemical-production cell for H2 production and CO2 sequestration. Environmental Science & Technology Letters 2014, 1:231-235.

  35. Zhu, X. P.; Logan, B. E. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration. Bioresource Technology 2014, 159:24-29.

  36. Zhu, X. P.; Logan, B. E. Copper anode corrosion affects power generation in microbial fuel cells. Journal of Chemical Technology and Biotechnology 2014, 89: 471-474.

  37. Zhu, X. P.; Hatzell, M. C.; Cusick, R. D.; Logan, B. E. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production. Electrochemistry Communications 2013, 31, 52-55.

  38. Zhu, X. P.; Logan, B. E. Using single-chamber microbial fuel cells as renewable power sources for electro-Fenton treatment of organic pollutants. Journal of Hazardous Materials 2013, 252-253, 198-203.

  39. Zhu, X. P.; Tokash, J. C.; Hong, Y. Y; Logan, B.E. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials. Bioelectrochemistry 2013, 90, 30-35.

  40. Zhu, X. P.; Yates, M. D.; Logan, B. E. Set potential regulation reveals additional oxidation enzyme peaks of Geobacter sulfurreducens anodic biofilms. Electrochemistry Communications 2012, 22, 116-119.

  41. Zhu, X. P.; Ni, J. R.; Wei, J. J.; Xing, X.; Li, H. N.; Jiang, Y. Scale-up of B-doped diamond anode system for electrochemical oxidation of phenol simulated wastewater in batch mode. Electrochimica Acta 2011, 56, 9437-9447.

  42. Zhu, X. P.; Ni, J. R. The improvement of boron-doped diamond anode system in electrochemical degradation of p-nitrophenol by zero-valent iron. Electrochimica Acta 2011, 56, 10371-10377.

  43. Zhu, X. P.; Ni, J. R.; Xing, X.; Li, H. N.; Jiang, Y. Synergies between electrochemical oxidation and activated carbon adsorption in three-dimensional boron-doped diamond anode system. Electrochimica Acta 2011, 56, 1270-1274.

  44. Zhu, X. P.; Ni, J. R.; Wei, J. J.; Xing, X.; Li, H. N.; Jiang, Y. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode. Journal of Hazardous Materials 2011, 189, 127-133.

  45. Zhu, X. P.; Ni, J. R.; Li, H. N.; Jiang, Y.; Xing, X.; Borthwick, A. Effects of ultrasound on electrochemical oxidation mechanisms of p-substituted phenols at BDD and PbO2 anodes. Electrochimica Acta 2010, 55, 5569-5575.

  46. Zhu, X. P.; Ni, J. R.; Wei, J. J.; Xing, X.; Li, H. N.; Jiang, Y. Scale-up of BDD anode system for electrochemical oxidation of phenol simulated wastewater in continuous mode. Journal of Hazardous Materials 2010, 184, 493-498.

  47. Zhu, X. P.; Ni, J. R. Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochemistry Communications 2009, 11, 274-277.

  48. Zhu, X. P.; Ni, J. R.; Lai P. Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes. Water Research 2009, 43, 4347-4355.

  49. Zhu, X. P.; Tong, M. P.; Shi, S. Y.; Zhao, H. Z.; Ni, J. R. Essential explanation of the strong mineralization performance of boron-doped diamond electrodes. Environmental Science & Technology 2008, 42, 4914- 4920.

  50. Zhu, X. P.; Shi, S. Y.; Wei, J. J.; Lv, F. X.; Zhao, H. Z.; Kong, J. T.; He, Q.; Ni, J. R. Electrochemical oxidation characteristics of p-substituted phenols using a boron-doped diamond electrode. Environmental Science & Technology 2007, 41, 6541-6546.