中文  |  English
招聘信息:
当前位置:首页
李庆
发表时间:2021-03-19 阅读次数:16873次

李庆 青年研究员/博士生导师 

邮箱:qli@fudan.edu.cn

电话:021-31248901

 

个人简历

2012年6月清华大学工程物理系获工学博士学位,随后在清华大学环境学院和日本广岛大学等从事博士后和客座研究员等研究工作,2017年2月加入复旦大学环境科学与工程系,任职青年研究员。

 

教学课程

本科生:《大气污染控制》。

研究生:《燃烧源污染控制》。

 

主要学术成绩

围绕燃烧源气溶胶形成、演化及环境/健康效应开展研究,取得了系列成果:

(1)发现了大气中磁性纳米颗粒物Fe3O4的来源,阐明了Fe3O4在燃烧过程中的形成机理;

(2)揭示了工业烟羽中过饱和水蒸气促进气态硫氧化物向硫酸盐气溶胶的非均相转化机制,量化出其对大气硫酸盐的贡献;

(3)建立了同步甄别气溶胶极性与非极性关键有机组分图谱的方法,揭示出”燃烧效率—气溶胶化学成分—细胞生物毒性”的内在关联机制。

 

主要研究方向:燃烧源气溶胶及其前体物

燃烧源气溶胶是新近兴起并逐渐走向成熟的交叉学科,需要流体力学、燃烧化学、地球科学、环境毒理学等多学科知识的汇聚融合。本团队采用“实际燃烧过程/模拟控制燃烧的综合实验—烟气污染控制技术诊断—化学分析—生物毒理评估”研究思路,通过多学科交叉融合的技术路线来探索燃烧源气溶胶的关键科学问题:

(1)燃料燃烧过程中气溶胶的形成与转化规律,包括燃烧效率对污染物形成和转化的关联机制;

(2)烟气污染控制技术对气溶胶及其前体物的调控作用,包括脱硫、脱硝和除尘系统对烟气成分的影响;

(3)非完全燃烧源气溶胶的化学成分解析与健康效应评估,包括民用燃烧、机动车、焚烧等源排放气溶胶的指纹图谱和毒理效应。

 

 

 

近期主要科研项目

  1. 国家自然科学基金面上项目(21876028):典型燃煤电厂和钢铁厂的SO3排放特征及其对颗粒物老化影响的研究,2019.1~2022.12,主持;
  2. 国家自然科学基金青年项目(41805091):货运船舶排放典型气态与颗粒态污染物组分特征的研究,2019.1~2021.12,主持;
  3. 国家重点研发计划“大气污染成因与控制技术研究”(2018YFC0213800):“长三角PM2.5和臭氧协同防控策略与技术集成示范” ,2018.7~2021.6,参与;
  4. 上海市自然科学基金面上项目(18ZR1403000):典型货运船舶排放细颗粒物的特征及其对上海空气质量的影响研究,2018.6~2021.5,主持;
  5. 国家自然科学基金重点研究计划(91743202):长三角代表性城市大气细颗粒样品的采集及其表征与解析,2018.1~2021.12,参与。

 

荣誉

2020年Environmental Science & Technology Letters 优秀审稿人

2019年复旦大学2019年度青年教师教学竞赛二等奖

2018年Science of Total Environment 优秀审稿人

 

第一/通讯的期刊论文

  1. S. Li, B. Zhang, D. Wu, Z. Li, S. Chu, X. Ding, X. Tang, J. Chen, and Q. Li*, “Magnetic Particles Unintentionally Emitted from Anthropogenic Sources: Iron and Steel Plants”, Environ. Sci. Tech. Lett. DOI: 10.1021/acs.estlett.1c00164 (2021).
  2. Y. Huo, Z. Guo, Q. Li*, D. Wu, X. Ding, A. Liu, D. Huang, G. Qiu, M. Wu, Z. Zhao, H. Sun, W. Song, X. Li, Y. Chen, T. Wu, and J. Chen, “Chemical fingerprinting of HULIS in particulate matters emitted from residential coal and biomass combustion”, Environ. Sci. Tech. 55, 3593 (2021).
  3. X. Ding, Q. Li*, D. Wu, X. Wang, M. Li, T. Wang, L. Wang, and J. Chen, “Direct Observation of Sulfate Explosive Growth in Wet Plumes Emitted From Typical Coal-Fired Stationary Sources”, Geophys. Res. Lett. 48, e2020GL092071 (2021).
  4. X. Ding, Q. Li*, D. Wu, Y. Huo, Y. Liang, H. Wang, J. Zhang, S. Wang, T. Wang, X. Ye, and J. Chen, “Gaseous and Particulate Chlorine Emissions from Typical Iron and Steel Industry in China”, J. Geophys. Res. – Atmos. 125, e2020JD032729 (2020).
  5. Y. Liang, Q. Li*, X. Ding, D. Wu, F. Wang, T. Otsuki, Y. Cheng, T. Shen, S. Li, and J. Chen, “Forward ultra-low emission for power plants via wet electrostatic precipitators and newly developed demisters: Filterable and condensable particulate matters”, Atmos. Environ. 225, 117372 (2020).
  6. Q. Li, C. W. Kartikowati, T. Iwaki, K. Okuyama,and T. Ogi*, “Enhanced Magnetic Performance of Aligned Wires Assembled from Nanoparticles: from Nanoscale to Macroscale”, R. Soc. Open Sci. 7, 191656 (2020).
  7. D. Wu, X. Ding, Q. Li*, J. Sun, C. Huang, L. Yao, X. Wang, X. Ye, Y. Chen, H. He, and J. Chen*, “Pollutants emitted from typical Chinese vessels: potential contributions to ozone and secondary organic aerosols”, J. Clean. Prod. 238, 117862 (2019).
  8. X. Ding, Q. Li*, D. Wu, Y. Liang, X. Xu, G. Xie, Y. Wei, H. Sun, C. Zhu, H. Fu, and J. Chen*, “Unexpectedly Increased Particle Emissions from the Steel Industry Determined by Wet/Semidry/Dry Flue Gas Desulfurization Technologies”, Environ. Sci. Tech. 53, 10361 (2019).
  9. L. Chen, Q. Li*, D. Wu, H. Sun, Y. Wei, X. Ding, H. Chen, T. Cheng, and J. Chen*, “Size distribution and chemical composition of primary particles emitted during open biomass burning processes: Impacts on cloud condensation nuclei activation”, Sci. Total Environ. 674, 179 (2019).
  10. Q. Li#, J. Qi#, J. Wu*, J. Jiang*, L. Duan, S. Wang, and J. Hao, “Significant reduction in air pollutant emissions from household cooking stoves by replacing raw solid fuels with their carbonized products”, Sci. Total Environ. 650, 653 (2019).
  11. D. Wu, Q. Li*, X. Ding, J. Sun, D. Li, H. Fu, M. Teich, X. Ye, and J. Chen*, “Primary Particulate Matter Emitted from Heavy Fuel and Diesel Oil Combustion in a Typical Container Ship: Characteristics and Toxicity”, Environ. Sci. Tech. 52, 12943 (2018).
  12. Q. Li, C. W. Kartikowati, S. Horie, T. Ogi*, T. Iwaki, and K. Okuyama, “Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles”, Sci. Rep. 7, 9894 (2017).
  13. Q. Li, T. Ogi*, C. W. Kartikowati, T. Iwaki, and K. Okuyama, “Facile fabrication of carbon nanotube forest films via coaxial electrospray”, Carbon 115, 116 (2017).
  14. Q. Li, J. Jiang*, S. Wang, K. Rumchev, R. Mead-Hunter, L. Morawska, and J. Hao, “Impacts of Household Solid Fuel Combustion on Indoor and Ambient Air Quality in China: Current Status and Implication”, Sci. Total Environ. 576, 347 (2017).
  15. Q. Li, X. Li, J. Jiang*, L. Duan, S. Ge, Q. Zhang, J. Deng, S. Wang, and J. Hao*, “Semi-coke briquettes: towards reducing emissions of primary PM2.5, elemental/organic carbon, and carbon monoxide from household coal combustion in China”, Sci. Rep. 6, 19306 (2016).
  16. Q. Li, J. Jiang*, S. Cai, W. Zhou, S. Wang, L. Duan, and J. Hao, “Gaseous Ammonia Emissions from Coal and Biomass Combustion in Household Stoves with Different Combustion Efficiencies”, Environ. Sci. Tech. Lett. 3, 164 (2016).
  17. Q. Li, J. Jiang*, J. Qi, J. Deng, D. Yang, J. Wu, L. Duan, and J. Hao, “Improving Stove Energy Efficiency to Reduce Pollutant Emission from Household Solid Fuel Combustion in China”, Environ. Sci. Tech. Lett. 3, 369 (2016).
  18. Q. Li, J. Jiang*, Q. Zhang, W. Zhou, S. Cai, L. Duan, S. Ge, and J. Hao, “Influences of Coal Size, Volatile Matter Content, and Ash Content on Primary Particulate Matter Emissions from Household Stove Combustion”, Fuel 182, 780 (2016).
  19. J. Qi#, Q. Li#, J. Wu*, J. Jiang*, Z. Miao, and D. Li, “Bio-Coal Briquette Combusted in a Household Cooking Stove: Improved Thermal Efficiency and Reduced Pollutant Emissions”, Environ. Sci. Tech. 51, 1886 (2016).
  20. 李庆, 段雷,蒋靖坤*,王书肖,郝吉明, “我国民用燃煤一次颗粒物的减排潜力研究”, 中国电机工程学报 36, 4408 (2016).
  21. Q. Li, J. Jiang*, L. Duan, J. Deng, L. Jiang, Z. Li, and J. Hao, “Improving the removal efficiency of elemental mercury by pre-existing aerosol particles in double dielectric barrier discharge treatments”, Aerosol Air Qual. Res. 15,1506 (2015).
  22. Q. Li, J. Jiang*, and J. Hao, “A review of aerosol nanoparticle formation from ions”, KONA Powder Particle J. 32, 57 (2015).
  23. Q. Li*, H. Takana*, Y. K. Pu*, and H. Nishiyama*, “Glow-like helium and filament-like argon plasma jets of using a dielectric barrier configuration at atmospheric pressure”, IEEE Trans. Plasma Sci. 42, 2360 (2014).
  24. Q. Li*, H. Takana, Y. K. Pu, and H. Nishiyama*, “A nonequilibrium argon-oxygen planar plasma jet using a half-confined dielectric barrier duct in ambient air”, Appl. Phys. Lett. 100, 133501 (2012).
  25. Q. Li*, H. Takana, Y. K. Pu, and H. Nishiyama*, “An atmospheric pressure quasi-uniform planar plasma jets by using a dielectric barrier configuration”, Appl. Phys. Lett. 98, 241501 (2011).
  26. Q. Li*, Y. K. Pu, M. A. Lieberman, and D. Economou, “Dynamic model of streamer coupling for the homogeneity of glow-like dielectric barrier discharges at near-atmospheric pressure”, Phys. Rev. E 83, 046405 (2011).
  27. Q. Li*, Y. K. Pu, and H. Nishiyama, “Atmospheric pressure dielectric barrier plasma jets elongated by elevating external electric field”, IEEE Trans. Plasma Sci. 39, 2290 (2011).
  28. Q. Li, W. C. Zhu, X. M. Zhu, and Y. K. Pu*, “Effects of Penning ionization on the discharge patterns of atmospheric pressure plasma jets”, J. Phys. D: Appl. Phys. 43, 382001 (2010).
  29.  Q. Li*, X. M. Zhu, J. T. Li, and Y. K. Pu, “Role of metastable atoms in the propagation of atmospheric pressure dielectric barrier discharge jets”, J. Appl. Phys. 107, 043304 (2010).
  30. Q. Li*, J. T. Li, X. M. Zhu, W. C. Zhu, and Y. K. Pu, “Effects of gas flow rate on the length of atmospheric pressure nonequilibrium plasma jets”, Appl. Phys. Lett. 95, 141502 (2009).

 

欢迎对以上研究方向感兴趣的同学加入我们团队,攻读硕士/博士学位或博士后等研究工作。

版权所有 复旦大学环境科学与工程系 技术支持:上海维程    地址:上海市淞沪路2005号复旦大学江湾校区环境科学楼